Refine search
Results 1-10 of 20
Change in diagnostic ratios in expelled oils and residual extracts during semi-open pyrolysis experiments of an organic-rich shale
2022
Li, Zhongxuan | Huang, Haiping | Wang, Qianru | Zheng, Lunju
In order to investigate the effectiveness of diagnostic ratios in polycyclic aromatic hydrocarbon (PAH) source discrimination, semi-open pyrolysis experiments have been performed on an organic-rich, immature shale from the Winnipegosis Formation in southeastern Saskatchewan, Western Canada Sedimentary Basin. The concentrations and distributions of PAHs in expelled oils and residual extracts change drastically with increasing pyrolysis temperatures. The difficulty and inconsistency commonly encountered by using diagnostic ratios for PAH source identification in environmental samples seem to be rooted in the great variation of the diagnostic ratios themselves under different formation temperatures. No single diagnostic ratio allows a simple segregation of PAHs into petrogenic or pyrogenic sources. Some diagnostic ratios such as anthracene/phenanthrene and benz[a]anthracene/chrysene compound pairs are mostly effective for low-temperature pyrolysis, whereas indeno[1,2,3-cd]pyrene/benzo[ghi]perylene, aromatic hydrocarbon ring number distribution and degree of alkylation are mainly valid for high-temperature pyrolysis. The diagnostic ratios based on fluoranthene/pyrene, benzo[bk]fluoranthene/benz[a]pyrene compound pairs enjoy limited validity over a narrow pyrolysis range, whereas parameters derived from aromatic hydrocarbon ring number distribution, degree of alkylation and 1,7-/(2,6- + 1,7-dimentylphenanthrene) may be undistinguishable between petrogenesis and low-temperature pyrolysis. The apparent temperature-related variability must be taken into account when using the diagnostic ratios for source identification purposes. Multiple molecular markers need to be carefully selected to confirm the results obtained with PAH diagnostic ratios. Mechanical use of diagnostic ratios most likely leads to misinterpretation of environmental samples.
Show more [+] Less [-]Occurrence and weathering of petroleum hydrocarbons deposited on the shoreline of the North Saskatchewan River from the 2016 Husky oil spill
2020
Yang, Zeyu | Shah, Keval | Laforest, Sonia | Hollebone, Bruce P. | Situ, Jane | Crevier, Charlotte | Lambert, Patrick | Brown, Carl E. | Yang, Chun
Following the 16TAN Husky oil spill along the North Saskatchewan River (NSR), the occurrence and natural attenuation of the petroleum hydrocarbons were assessed by analyzing the littoral zone sediments/oil debris collected from July 2016 to October 2017. Husky oil-free, mixed sediment-Husky oil, and Husky oil debris samples were identified for all the collected samples. Shoreline sediments were contaminated by mixed biogenic, pyrogenic and petrogenic inputs prior to the spill. Oil stranded on the shoreline of NSR was moved or buried due to the very dynamic conditions of the shoreline, or cleaned through a series of cleanup activities after the spill. Most normal alkanes were naturally weathered, whereas most of the branched alkanes and all of the saturated petroleum biomarkers remained. Some lighter molecular weight (e.g., 2 to 3-ring) polycyclic aromatic hydrocarbons (PAHs) were lost rapidly after the spill, whereas sulfur containing components, e.g., dibenzothiophenes and benzonaphthothiiophenes, and those having a heavier molecular weight did not change markedly even 15 months post-spill. Similarly, some light hydrocarbons (e.g., <C₁₀) were lost over the first kilometers from the point of entry (POE), while heavier hydrocarbons did not show any major differences away from the POE. Very large inter-site and inter-survey discrepancies were found for samples. Evaporation into the air and dissolution into water, combined with biodegradation, were together or independently the main contributors to the loss of the light molecular hydrocarbons.
Show more [+] Less [-]Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America
2012
Bates, Lara M. | Hall, Britt D.
Prairie wetlands may be important sites of mercury (Hg) methylation resulting in elevated methylmercury (MeHg) concentrations in water, sediments and biota. Invertebrates are an important food resource and may act as an indicator of MeHg exposure to higher organisms. In 2007–2008, invertebrates were collected from wetland ponds in central Saskatchewan, categorized into functional feeding groups (FFGs) and analyzed for total Hg (THg) and MeHg. Methylmercury and THg concentrations in four FFGs ranged from 0.2–393.5 ng·g⁻¹ and 9.7–507.1 ng·g⁻¹, respectively. Methylmercury concentrations generally increased from gastropods with significantly lower average MeHg concentrations compared to other invertebrate taxa. Surrounding land use (agricultural, grassland and organic agricultural) may influence MeHg concentrations in invertebrates, with invertebrate MeHg concentrations being higher from organic ponds (457.5 ± 156.7 ng·g⁻¹) compared to those from grassland ponds (74.8 ± 14.6 ng·g⁻¹) and ponds on agricultural lands (32.8 ± 6.2 ng·g⁻¹).
Show more [+] Less [-]Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic activities with several nuclear receptors
2017
Peng, Hui | Sun, Jianxian | Saunders, David M.V. | Codling, Garry | Wiseman, Steve | Jones, Paul D. | Giesy, John P.
In the current study, by combining ultra-high resolution (UHR) MS1 spectra, MS2 spectra, and derivatization, three hydroxylated isomers of 2-ethylhexyl tetrabromobenzoate (OH-TBB) were identified in Firemaster® 550 and BZ-54 technical products. Also, a new LC-UHRMS method, using atmospheric pressure chemical ionization (APCI), was developed for simultaneous analysis of OH-TBB, TBB, hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) and TBPH in 23 samples of dust collected from houses in Saskatoon, SK, Canada. OH-TBBs were detected in 91% of samples, with a geometric mean concentration of 0.21 ng/g, which was slightly less than those of OH-TBPH (0.35 ng/g). TBB was detected in 100% of samples of dust with a geometric mean concentration of 992 ng/g. Significant (p < 0.001) log-linear relationships between concentrations of OH-TBBs, TBB, or OH-TBPHs and TBPH in dust support the hypothesis of a common source of these compounds. OH-TBBs were found to be strong agonists of peroxisome proliferator-activated receptor gamma (PPARγ) and weaker agonists of the estrogen receptor (ER), but no agonistic activity was observed with the androgen receptor (AR). Occurrence of OH-TBBs in technical products and house dust, together with their relatively strong PPARγ activities, indicated their potential risk to health of humans.
Show more [+] Less [-]Modelling carbon dioxide emissions from agricultural soils in Canada
2017
Yadav, Dhananjay | Wang, Junye
Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO2) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO2 emissions from the agricultural sector.
Show more [+] Less [-]Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada
2008
Muscatello, J.R. | Belknap, A.M. | Janz, D.M.
The objective of this study was to investigate the accumulation of selenium in lakes downstream of a uranium mine operation in northern Saskatchewan, Canada. Selenium concentrations in sediment and biota were elevated in exposure areas even though water concentrations were low (<5 μg/L). The pattern (from smallest to largest) of selenium accumulation was: periphyton < plankton and filterer invertebrates < detritivore and predator invertebrates < small bodied (forage) fish and predatory fish. Biomagnification of selenium resulted in an approximately 1.5–6 fold increase in the selenium content between plankton, invertebrates and forage fish. However, no biomagnification was observed between forage fish and predatory fish. Selenium content in organisms from exposure areas exceeded the proposed 3–11 μg/g (dry weight) dietary toxicity threshold for fish, suggesting that the selenium released into these aquatic systems has the potential to bioaccumulate and reach levels that could impair fish reproduction. Selenium bioaccumulation patterns in a north temperate, cold water aquatic ecosystem were similar to those reported from warm water systems.
Show more [+] Less [-]Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions
2019
Bhanja, Soumendra N. | Wang, Junye | Shrestha, Narayan K. | Zhang, Xiaokun
A conversion of the global terrestrial carbon sink to a source is critically dependent on the microbially mediated decomposition of soil organic matter (SOM). We have developed a detailed, process-based, mechanistic model for simulating SOM decomposition and its associated processes, based on Microbial Kinetics and Thermodynamics, called the MKT model. We formulated the sequential oxidation-reduction potential (ORP) and chemical reactions undergoing at the soil-water zone using dual Michaelis-Menten kinetics. Soil environmental variables, as required in the MKT model, are simulated using one of the most widely used watershed-scale models - the soil water assessment tool (SWAT). The MKT model was calibrated and validated using field-scale data of soil temperature, soil moisture, and N₂O emissions from three locations in the province of Saskatchewan, Canada. The model evaluation statistics show good performance of the MKT model for daily soil N₂O simulations. The results show that the proposed MKT model can perform better than the more widely used process-based and SWAT-based models for soil N₂O simulations. This is because the multiple processes of microbial activities and environmental constraints, which govern the availability of substrates to enzymes were explicitly represented. Most importantly, the MKT model represents a step forward from conceptual carbon pools at varying rates.
Show more [+] Less [-]Bioconcentration of polycyclic musks in fathead minnows caged in a wastewater effluent plume
2017
Lefebvre, Claudine | Kimpe, Linda E. | Metcalfe, Christopher D. | Trudeau, Vance L. | Blais, Jules M.
The synthetic polycyclic musks HHCB (Galaxolide®) and AHTN (Tonalide®) were monitored in fathead minnows (FHMs) caged for a month at various locations in the North Saskatchewan River (NSR), upstream and downstream of the Gold Bar wastewater treatment plant that serves the city of Edmonton, AB, Canada. In addition, the distribution of these musk compounds in the river was predicted using the fugacity-based Quantitative Water Air Sediment Interface (QWASI) model. In FHMs caged 0.15 km downstream of the wastewater outfall, mean concentrations of HHCB and AHTN were 7.4 and 0.4 μg g−1 wet weight, respectively. These are among the highest reported concentrations of these musk compounds in fish exposed to treated wastewater. The musk concentrations in FHMs were significantly lower further downstream of the outfall. High bioconcentration factors (BCFs) in FHMs that exceeded 104 higher than estimated concentrations in water indicated that there were low rates of biotransformation of the musks in the fish. In the FHMs caged at the site closest to the wastewater outfall, HHCB concentrations in FHMs were comparable to the body burdens that have been reported to moderate expression of vitellogenin in female rainbow trout, indicating that fish in the NSR downstream of the wastewater outfall may be at risk of anti-estrogenic effects. The QWASI model applied to six individual river sections of the NSR predicted that the largest fluxes of HHCB and AHTN would be for downstream transport in water, which explains why FHMs accumulated elevated concentrations of the musks at the furthest downstream site, 9.9 km from the wastewater discharge.
Show more [+] Less [-]Health risks from arsenic-contaminated soil in Flin Flon-Creighton, Canada: Integrating geostatistical simulation and dose-response model
2009
Zhang, Hua | Huang, Guo-he | Zeng, Guang-ming
Elevated concentrations of arsenic were detected in surface soils adjacent to a smelting complex in northern Canada. We evaluated the cancer risks caused by exposure to arsenic in two communities through combining geostatistical simulation with demographic data and dose-response models in a framework. Distribution of arsenic was first estimated using geostatistical circulant-embedding simulation method. We then evaluated the exposures from inadvertent ingestion, inhalation and dermal contact. Risks of skin caner and three internal cancers were estimated at both grid scale and census-unit scale using parametric dose-response models. Results indicated that local residents could face non-negligible cancer risks (skin cancer and liver cancer mainly). Uncertainties of risk estimates were discussed from the aspects of arsenic concentrations, exposed population and dose-response model. Reducing uncertainties would require additional soil sampling, epidemic records as well as complementary studies on land use, demographic variation, outdoor activities and bioavailability of arsenic. Cancer risks induced by arsenic in soil were evaluated using geostatistical simulation and dose-response model.
Show more [+] Less [-]Effects of herbicides on two submersed aquatic macrophytes, Potamogeton pectinatus L. and Myriophyllum sibiricum Komarov, in a prairie wetland
1997
Forsyth, D.J. | Martin, P.A. | Shaw, G.G. (Canadian Wildlife Service, 115 Perimeter Road, Saskatoon, Saskatchewan S7N 0X4 (Canada))