Refine search
Results 1-10 of 67
Antimicrobial-resistance profiles of gram-negative bacteria isolated from green turtles (Chelonia mydas) in Taiwan Full text
2021
Tsai, Ming-An | Chang, Chao-Chin | Li, Zongxian
The green turtle (Chelonia mydas) is listed as a globally endangered species and is vulnerable to anthropogenic threats, including environmental pollution. This study investigated the antimicrobial resistance of Gram-negative bacteria isolated from wild green turtles admitted to a sea turtle rehabilitation center in Taiwan. For this investigation, cloacal and nasal swab samples were collected from 28 green turtles between 2018 and 2020, from which a total of 47 Gram-negative bacterial isolates were identified. Among these, Vibrio spp. were the most dominant isolate (31.91%), and 89.36% of the 47 isolates showed resistance to at least one of 18 antimicrobial agents tested. Isolates resistant to one (6.38%), two (8.51%), and multiple (74.47%) antimicrobials were observed. The antimicrobial agents to which isolates showed the greatest resistance were penicillin (74.47%), followed by spiramycin, amoxicillin, and cephalexin. The antimicrobial-resistance profiles identified in this study provide useful information for the clinical treatment of sea turtles in rehabilitation facilities. The results of our study also imply that wild green turtles may be exposed to polluting effluents containing antimicrobials when the turtles traverse migratory corridors or forage in feeding habitats. To benefit sea turtle conservation, future research should focus on (1) how to prevent pollution from antimicrobials in major green turtle activity areas and (2) identifying sources of antimicrobial-resistant bacterial strains in coastal waters of Taiwan.
Show more [+] Less [-]Scavenging as a pathway for plastic ingestion by marine animals Full text
2019
Andrades, Ryan | dos Santos, Roberta Aguiar | Martins, Agnaldo Silva | Teles, Davi | Santos, Robson Guimarães
Plastic pollution is prevalent worldwide and affects marine wildlife from urbanized beaches to pristine oceanic islands. However, the ecological basis and mechanisms that result in marine animal ingestion of plastic debris are still relatively unknown, despite recent advances. We investigated the relationship between scavenging behavior and plastic ingestion using green turtles, Chelonia mydas, as a model. Diet analysis of C. mydas showed that sea turtles engaging in scavenging behavior ingested significantly more plastic debris than individuals that did not engage in this foraging strategy. We argue that opportunistic scavenging behavior, an adaptive behavior in most marine ecosystems, may now pose a threat to a variety of marine animals due to the current widespread plastic pollution found in oceans.
Show more [+] Less [-]Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations Full text
2018
Cortés-Gómez, Adriana A. | Morcillo, Patricia | Guardiola, Francisco A. | Espinosa, Cristobal | Esteban, María A. | Cuesta Arranz, Alberto | Girondot, Marc | Romero, Diego
Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H₂O₂ may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles.
Show more [+] Less [-]Loggerhead sea turtles (Caretta caretta): A target species for monitoring litter ingested by marine organisms in the Mediterranean Sea Full text
2017
Matiddi, Marco | Hochsheid, Sandra | Camedda, Andrea | Baini, Matteo | Cocumelli, Cristiano | Serena, Fabrizio | Tomassetti, Paolo | Travaglini, Andrea | Marra, Stefano | Campani, Tommaso | Scholl, Francesco | Mancusi, Cecilia | Amato, Ezio | Briguglio, Paolo | Maffucci, Fulvio | Fossi, Maria Cristina | Bentivegna, Flegra | de Lucia, Giuseppe Andrea
Marine litter is any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Ingestion of marine litter can have lethal and sub-lethal effects on wildlife that accidentally ingests it, and sea turtles are particularly susceptible to this threat. The European Commission drafted the 2008/56/EC Marine Strategy Framework Directive with the aim to achieve a Good Environmental Status (GES), and the loggerhead sea turtle (Caretta caretta, Linnaeus 1758) was selected for monitoring the amount and composition of litter ingested by marine animals. An analogous decision has been made under the UNEP/MAP Barcelona Convention for the protection of the Mediterranean Sea, following the Ecosystem Approach. This work provides for the first time, two possible scenarios for the Marine Strategy Framework Directive GES, both related to “Trends in the amount and composition of litter ingested by marine animals” in the Mediterranean Sea. The study validates the use of the loggerhead turtle as target indicator for monitoring the impact of litter on marine biota and calls for immediate use of this protocol throughout the Mediterranean basin and European Region. Both GES scenarios are relevant worldwide, where sea turtles and marine litter are present, for measuring the impact of ingested plastics and developing policy strategies to reduce it. In the period between 2011 and 2014, 150 loggerhead sea turtles, found dead, were collected from the Italian Coast, West Mediterranean Sea Sub-Region. The presence of marine litter was investigated using a standardized protocol for necropsies and lab analysis. The collected items were subdivided into 4 main categories, namely, IND-Industrial plastic, USE-User plastic, RUB-Non plastic rubbish, POL-Pollutants and 14 sub-categories, to detect local diversity. Eighty-five percent of the individuals considered (n = 120) were found to have ingested an average of 1.3 ± 0.2 g of litter (dry mass) or 16 ± 3 items.
Show more [+] Less [-]Litter ingestion and entanglement in green turtles: An analysis of two decades of stranding events in the NE Atlantic Full text
2022
Rodríguez, Yasmina | Vandeperre, Frederic | Santos, Marco R. | Herrera, Laura | Parra, Hugo | Deshpande, Ashok | Bjorndal, Karen A. | Pham, Christopher K.
Survivorship of early life stages is key for the well-being of sea turtle populations, yet studies on animals that distribute around oceanic areas are very challenging. So far, the information on green turtles (Chelonia mydas) that use the open NE Atlantic as feeding grounds is scarce. Strandings occurring in oceanic archipelagos can provide relevant information about the biology, ecology and current anthropogenic pressures for megafauna inhabiting the open ocean. In this study, we analysed stranding events of green turtles found in the Azores archipelago to investigate interactions with marine litter. In addition, we quantified and characterized litter items stranded on beaches to provide a direct comparison between the ingested items with the debris found in the environment. A total of 21 juvenile green turtles were found stranded in the region between 2000 and 2020 (size range: 12–49 cm, CCL). Overall, 14% of the animals were entangled in marine litter and 86% of the turtles necropsied had ingested plastic. The mean abundance of items ingested was 27.86 ± 23.40 and 98% were white/transparent. Hard plastic fragments between 1 and 25 mm were the most common shape recovered in the turtles, similarly to what was found on the coastline. All of the litter items analysed with pyrolysis GC-MS revealed to be polyethylene (PE). This study provides the first baseline assessment of interactions of plastic litter with juvenile green turtles found at the east edge of the North Atlantic Subtropical Gyre. The combination of these results supports the hypothesis that migratory megafauna that use remote oceanic islands as a feeding ground are exposed to anthropogenic litter contamination dominated by plastics, even when these regions are located far away from big industrial centers or populated cities.
Show more [+] Less [-]Sea turtles across the North Pacific are exposed to perfluoroalkyl substances Full text
2021
Wood, Cathryn | Balazs, George H. | Rice, Marc | Work, Thierry M. | Jones, T Todd | Sterling, Eleanor | Summers, Tammy M. | Brooker, John | Kurpita, Lauren | King, Cheryl S. | Lynch, Jennifer M.
Perfluorinated alkyl substances (PFASs) are global, persistent, and toxic contaminants. We assessed PFAS concentrations in green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles from the North Pacific. Fifteen compounds were quantified via liquid chromatography tandem mass spectrometry from 62 green turtle and 6 hawksbill plasma samples from Hawai’i, Palmyra Atoll, and the Northern Marianas Islands. Plasma from 14 green turtles severely afflicted with fibropapillomatosis, and eggs from 12 Hawaiian hawksbill nests from 7 females were analyzed. Perfluorooctane sulfonate (PFOS) predominated in green turtle plasma; perfluorononanoic acid (PFNA) predominated in hawksbill tissues. Concentrations were greater in hawksbill than green turtle plasma (p < 0.05), related to trophic differences. Green turtle plasma PFOS concentrations were related to human populations from highest to lowest: Hawai’i, Marianas, Palmyra. Influence on fibropapillomatosis was not evident. PFASs were maternally transferred to hawksbill eggs, with decreasing concentrations with distance from airports and with clutch order from one female. A risk assessment of PFOS showed concern for immunosuppression in Kailua green turtles and alarming concern for hawksbill developmental toxicity. Perfluoroundecanoic (PFUnA) and perfluorotridecanoic (PFTriA) acid levels were correlated with reduced emergence success (p < 0.05). Studies to further examine PFAS effects on sea turtle development would be beneficial.
Show more [+] Less [-]Evidence of ingested plastics in stranded loggerhead sea turtles along the Greek coastline, East Mediterranean Sea Full text
2020
Digka, Nikoletta | Bray, Laura | Tsangaris, Catherine | Andreanidou, Konstantina | Kasimati, Eirini | Kofidou, Evangelia | Komnenou, Anastasia | Kaberi, Helen
Plastic debris has become a major threat to the marine environment and wildlife. Sea turtles are particularly vulnerable, and are known to ingest plastic debris globally; however, information from Greek waters is still absent. In this study, 36 stranded dead loggerhead turtles (Caretta caretta) were collected from the Greek coastline area, and their gastrointestinal content was analysed for ingested plastic debris. Twenty-six individuals (72%) were found to have ingested plastic, with an average of 7.94 ± 3.85 (SE) plastic items per turtle. In total, 286 plastic items were counted and categorised by size, shape, colour, and polymer type. Fourier Transform Infrared Spectrometry revealed that polypropylene and polyethylene were the dominant polymer plastic types found. Results indicated a variation in plastic ingestion amongst life stages of the loggerhead specimens. This study provides evidence of plastic ingestion by loggerhead turtles in Greek waters.
Show more [+] Less [-]Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida Full text
2017
Perrault, Justin R. | Stacy, Nicole I. | Lehner, Andreas F. | Poor, Savannah K. | Buchweitz, John P. | Walsh, Catherine J.
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
Show more [+] Less [-]Food preferences and Hg distribution in Chelonia mydas assessed by stable isotopes Full text
2015
Bezerra, M.F. | Lacerda, L.D. | Rezende, C.E. | Franco, M.A.L. | Almeida, M.G. | Macêdo, G.R. | Pires, T.T. | Rostán, G. | Lopez, G.G.
Mercury (Hg) is a highly toxic pollutant that poses in risk several marine animals, including green turtles (Chelonia mydas). Green turtles are globally endangered sea turtle species that occurs in Brazilian coastal waters as a number of life stage classes (i.e., foraging juveniles and nesting adults). We assessed total Hg concentrations and isotopic signatures (13C and 15N) in muscle, kidney, liver and scute of juvenile green turtles and their food items from two foraging grounds with different urban and industrial development. We found similar food preferences in specimens from both areas but variable Hg levels in tissues reflecting the influence of local Hg backgrounds in food items. Some juvenile green turtles from the highly industrialized foraging ground presented liver Hg levels among the highest ever reported for this species. Our results suggest that juvenile foraging green turtles are exposed to Hg burdens from locally anthropogenic activities in coastal areas.
Show more [+] Less [-]Microplastic distribution and composition on two Galápagos island beaches, Ecuador: Verifying the use of citizen science derived data in long-term monitoring Full text
2022
Jones, Jen S. | Guézou, Anne | Medor, Sara | Nickson, Caitlin | Savage, Georgie | Alarcón-Ruales, Daniela | Galloway, Tamara S. | Muñoz-Pérez, Juan Pablo | Nelms, Sarah E. | Porter, Adam | Thiel, Martin | Lewis, Ceri
Monitoring beach plastic contamination across space and time is necessary for understanding its sources and ecological effects, and for guiding mitigation. This is logistically and financially challenging, especially for microplastics. Citizen science represents an option for sampling accessible sites to support long term monitoring, but challenges persist around data validation. Here we test a simple citizen science methodology to monitor visible microplastic contamination on sandy beaches using a standard quadrat unit (50 cm × 50 cm x 5 cm depth) sieved to 1 mm, to support the analysis of microplastic on two islands within the marine protected area of the Galápagos Archipelago, Ecuador (San Cristóbal and Santa Cruz islands). High school and university students undertook supervised sampling of two beaches in 2019–2020 collecting over 7000 particles. A sub-sample of the suspected microplastics collected (n = 2,213, ∼30% total) were analysed using FTIR spectrometry, confirming 93% of particles >1 mm visually identified by students were microplastics or rubber, validating this method as a crowd-sourced indicator for microplastic contamination. These data provide important insights into the plastic contamination of Galápagos, revealing plastic abundances of 0–2524 particles m⁻² over the two beaches (the highest reported in Galápagos). Strong accumulation gradients were measured parallel to the waterline at Punta Pitt (San Cristobal island) and perpendicular to the waterline at Tortuga Bay (Santa Cruz island), where four-fold higher concentrations were recorded at the sea turtle nesting habitat on the back-beach dune. No significant seasonal trends were measured during one year. These results demonstrate the value of citizen science in filling spatiotemporal knowledge gaps of beach contamination to support intervention design and conservation.
Show more [+] Less [-]