Refine search
Results 1-10 of 508
Effects of sulfur dioxide on growth, photosynthesis and enzyme activities of Chinese guger-tree seedlings.
1994
Sheu B.H.
Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil.
1995
Back J. | Huttunen S. | Turunen M. | Lamppu J.
Foliar leaching and root uptake of Ca, Mg and K in relation to acid fog effects on Douglas-fir.
1990
Turner D.P. | Tingey D.T.
Heavy metal uptake by wheat seedlings grown in fly ash-amended soils.
1987
Petruzzelli G. | Lubrano L. | Cervelli S.
Response of subarctic tree seedlings to solar UV radiation
2002
Turunen, M. (University of Lapland, Rovaniemi (Finland). Arctic Centre) | Suttinen, M. L. | Derome, K. | Norokorpi, Y. | Lakkala, K.
The response of Betula pubescens Ehr., B. pendula Roth and two provenances of Pinus sylvestris L. to solar ultraviolet radiation were investigated in a UV exclusion field experiment during the 1997-1999 growing seasons in Finnish Lapland. The seed-grown seedlings were grown under UV-B exclusion and UV-B/UV-A exclusion as compared to control treatment and ambient plants. The only significant impacts of UV exclusion were found in P. sylvestris provenance Enontekio. Longer-term field studies are needed to detect the cumulative characteristics of the UV responses
Show more [+] Less [-]Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars
2021
Cheng, Yiran | Yang, Tian | Xiang, Wenhui | Li, Siyu | Fan, Xing | Sha, Lina | Kang, Houyang | Wu, Dandan | Zhang, Haiqin | Zeng, Jian | Zhou, Yonghong | Wang, Yi
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH₄⁺-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH₄⁺-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH₄⁺-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH₄⁺-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH₄⁺-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH₄⁺-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Show more [+] Less [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Show more [+] Less [-]Effects of ketoprofen on rice seedlings: Insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis
2020
Wang, Huan | Jin, Mingkang | Xu, Linglin | Xi, Hao | Wang, Binhui | Du, Shaoting | Liu, Huijun | Wen, Yuezhong
Pharmacologically active compounds found in reclaimed wastewater irrigation or animal manure fertilizers pose potential risks for agriculture. The mechanism underlying the effects of ketoprofen on rice (Oryza sativa L.) seedlings was investigated. The results showed that low concentrations (0.5 mg L⁻¹) of ketoprofen slightly stimulate growth of rice seedlings, while high concentrations can significantly inhibit growth by reducing biomass and causing damage to roots. Ketoprofen affects photosynthetic pigment content (Chla, Chlb, and carotenoids) and chlorophyll synthesis gene (HEMA, HEMG, CHLD, CHLG, CHLM, and CAO) expression. Fluorescence parameters such as minimum fluorescence (F₀), maximum fluorescence (Fₘ), variable fluorescence (Fᵥ), potential photosynthetic capacity (Fᵥ/F₀), maximum quantum efficiency of PSII photochemistry (Fᵥ/Fₘ), electron transfer rate (ETR), and Y(II), Y(NPQ), Y(NO) values were affected, showing photosynthetic electron transfer was blocked. Active oxygen radical (O₂•−and H₂O₂), malondialdehyde and proline content increased. Superoxide dismutase, catalase and ascorbate peroxidase activities, glutathione content and antioxidant-related gene (FSD1, MSD1, CSD1, CSD2, CAT1, CAT2, CAT3, APX1, APX2) expression were induced. Higher integrated biomarker response values of eight oxidative stress response indexes were obtained at higher ketoprofen concentrations. Ultrastructure observation showed that ketoprofen causes cell structure damage, chloroplast swelling, increase in starch granules, and reduction in organelles. This study provides some suggested toxicological mechanisms and biological response indicators in rice due to stress from pharmacologically active compounds.
Show more [+] Less [-]Microplastic particles increase arsenic toxicity to rice seedlings
2020
Dong, Youming | Gao, Minling | Song, Zhengguo | Qiu, Weiwen
Hydroponic experiments were conducted to study the effects of microplastic particles of polystyrene (PS) and polytetrafluoroethylene (PTFE) on arsenic (As) content in leaves and roots of rice seedlings, and the changes in root vigor and physiological and biochemical indicators under single or combined PS and PTFE with As(III) treatment. Rice biomass decreased with increasing concentrations of PS, PTFE, and As(III) in the growth medium. The highest root (leaf) biomass decreases were 21.4% (10.2%), 25.4% (11.8%), and 26.2% (16.2%) with the addition of 0.2 g L⁻¹ PS, 0.2 g L⁻¹ PTFE, and 4 mg L⁻¹ As(III), respectively. Microplastic particles and As(III) inhibited biomass accumulation by inhibiting root activity and RuBisCO activity, respectively. The addition of As(III) and microplastic particles (PS or PTFE) inhibited photosynthesis through non-stomatal and stomatal factors, respectively; furthermore, net photosynthetic rate, chlorophyll fluorescence, and the Chl a content of rice were reduced with the addition of As(III) and microplastic particles (PS or PTFE). Microplastic particles and As(III) induced an oxidative burst in rice tissues through mechanical damage and destruction of the tertiary structure of antioxidant enzymes, respectively, thereby increasing O₂⁻ and H₂O₂ in roots and leaves, inducing lipid peroxidation, and destroying cell membranes. When PS and PTFE were added at 0.04 and 0.1 g L⁻¹, respectively, the negative effects of As(III) on rice were reduced. Treatment with 0.2 g L⁻¹ PS or PTFE, combined with As(III), had a higher impact on rice than the application of As(III) alone. PS and PTFE reduced As(III) uptake, and absorbed As decreased with the increasing concentration of microparticles. The underlying mechanisms for these effects may involve direct adsorption of As, competition between As and microplastic particles for adsorption sites on the root surface, and inhibition of root activity by microplastic particles.
Show more [+] Less [-]Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber
2020
Ahammed, Golam Jalal | Wang, Yaqi | Mao, Qi | Wu, Meijuan | Yan, Yaru | Ren, Jingjing | Wang, Xiaojuan | Liu, Airong | Chen, Shuangchen
Bisphenol A (BPA) is an emerging organic pollutant, widely distributed in environment. Plants can uptake and metabolize BPA, but BPA accumulation induces phytotoxicity. In this study, we administered dopamine, a kind of catecholamines with strong antioxidative potential, to unveil its role in cucumber tolerance to BPA stress. The results showed that exposure to BPA (20 mg L⁻¹) for 21 days significantly reduced growth and biomass accumulation in cucumber seedlings as revealed by decreased lengths and dry weights of shoots and roots. While BPA exposure decreased the chlorophyll content, cell viability and root activity, it remarkably increased reactive oxygen species (ROS) accumulation, electrolyte leakage and malondialdehyde (MDA) content, suggesting that BPA induced oxidative stress in cucumber. However, exogenous dopamine application significantly improved the photosynthetic pigment content, root cell viability, growth and biomass accumulation, and decreased the ROS and MDA levels by increasing the activity of antioxidant enzymes under BPA stress. Further analysis revealed that dopamine application significantly increased the glutathione content and the transcripts and activity of glutathione S-transferase under co-administration of dopamine and BPA compared with only BPA treatment. Moreover, dopamine decreased the BPA content in both leaves and roots, suggesting that dopamine promoted BPA metabolism by enhancing the glutathione-dependent detoxification. Our results show that dopamine has a positive role against BPA phytotoxicity and it may reduce the risks-associated with the dietary intake of BPA through consumption of vegetables.
Show more [+] Less [-]