Refine search
Results 1-10 of 316
Antibiotics Removal in Biological Sewage Treatment Plants
2016
Ghosh, Gopal | Hanamoto, S. | Yamashita, N. | Huang, X. | Tanaka, H.
This study investigated the occurrence and removal of 12 antibiotics (ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, nalidixic acid, azithromycin, clarithromycin, roxithromycin, lincomycin, novobiocin, sulfamethoxazole, trimethoprim) at four sewage treatment plants (STPs): two STPs in Kyoto, Japan and two STPs in Beijing, China. The STPs differed in design and operation conditions, utilized a variety of secondary treatment processes. The antibiotics were frequently detected in influents and effluents, and ranged from ng/L up to lower μg/L. In influent, clarithromycin (1.1–1.6 μg/L) and levofloxacin (3.6–6.8 μg/L) were detected in the highest concentration in Japanese and Chinese STPs, respectively. The overall elimination of the antibiotics were differed between STPs and ranged from negative to >90%. These data demonstrate that there are detectable levels of antibiotics are discharging from STPs, and only some of these antibiotics are being removed in a significant proportion by STPs. It was also observed that biological nutrient removal based sewage treatment processes (anaerobic–anoxic–oxic: A2O; and anoxic–oxic: AO) have relatively higher antibiotics removal efficiencies than oxidation ditch (OD) processes.
Show more [+] Less [-]Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox
2022
Ma, Ding | Wang, Jin | Li, Hao | Che, Jian | Yue, Zhengbo
In recent years, Feammox has made it possible to remove NH₄⁺-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH₄⁺-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH₄⁺-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH₄⁺-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0–30 cm) of Lim-UAF, while 60.2% of NH₄⁺-N was removed in the middle layer (30–60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60–90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)₃) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH₄⁺-N, which has excellent application prospects in domestic sewage treatment.
Show more [+] Less [-]Organophosphate esters in surface waters of Shandong Peninsula in eastern China: Levels, profile, source, spatial distribution, and partitioning
2022
Lian, Maoshan | Lin, Chunye | Xin, Ming | Gu, Xiang | Lü Shuang, | Wang, Baodong | Ouyang, Wei | Liu, Xitao | He, Mengchang
Organophosphate ester (OPE) levels, profiles, sources, spatial distribution, and partitioning were firstly studied in the rivers of the Shandong Peninsula. A total of 53 water samples and 45 sediment samples were collected from the rivers and the sewage treatment plant in the peninsula to quantitate levels of 13 targeted OPEs. Total OPE concentrations ranged from 263 to 6676 ng L⁻¹ in the water, and 39.3–360 ng g⁻¹ in the sediment. TEP, TCPP, and TCEP together contributed more than 90% of total OPE content. TCEP and TCPP concentrations in the Xiaoqing River sediment were increased by approximately two and seven times from 2014 to 2019, respectively. Total OPE concentrations generally increased from upstream regions to the estuaries. The main OPE sources were municipal effluent in the Jiaozhou Bay (JZB) watershed and chemical industrial wastewater in the Laizhou Bay (LZB) watershed. TCPP, TEP, and TCEP were generally approaching equilibrium between sediment and overlying water, while TNBP, TIBP, and TBOEP effectively transferred from the overlying water to the sediment. The riverine OPE flux was 0.66 ton/year to JZB and 3.58 ton/year to the LZB. TCPP and TCEP in municipal effluent, and TEP in chemical industrial wastewater should be regulated to protect Shandong Peninsula waters.
Show more [+] Less [-]A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook
2022
Chan, Yi Herng | Lock, Serene Sow Mun | Wong, Mee Kee | Yiin, Chung Loong | Loy, Adrian Chun Minh | Cheah, Kin Wai | Chai, Slyvester Yew Wang | Li, Claudia | How, Bing Shen | Chin, Bridgid Lai Fui | Chan, Zhe Phak | Lam, Su Shiung
Hydrogen sulfide (H₂S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H₂S from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for H₂S capture and removal are reviewed and discussed. In particular, the recent technologies for H₂S removal such as membrane, adsorption, absorption and membrane contactor are extensively reviewed. To date, adsorption using metal oxide-based sorbents is by far the most established technology in commercial scale for the fine removal of H₂S, while solvent absorption is also industrially matured for bulk removal of CO₂ and H₂S simultaneously. In addition, the strengths, limitations, technological gaps and way forward for each technology are also outlined. Furthermore, the comparison of established carbon capture technologies in simultaneous and selective removal of H₂S–CO₂ is also comprehensively discussed and presented. It was found that the existing carbon capture technologies are not adequate for the selective removal of H₂S from CO₂ due to their similar characteristics, and thus extensive research is still needed in this area.
Show more [+] Less [-]Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river
2021
Kameda, Yutaka | Yamada, Naofumi | Fujita, Emiko
There is increasing concern about the environmental behaviors of microplastics (MPs), in particular fine MPs (FMPs), such as their concentrations, sources, size distributions, and fragmentation by weathering in waters. However, there is little information about size distributions of MP polymer types and their relationships to their sources. Here, we analyzed concentrations, compositions, and size distributions of 18 polymer types of MPs of >20 μm by micro-Fourier transform infrared spectroscopy with a novel pretreatment method in surface waters at five sites from the headwaters to the mouth of a Japanese river, and in influent and effluent from a sewage treatment plant (STP). The microplastic concentrations ranged from 300 to 1240 particles/m³ in surface waters. Cluster analysis identified two primary sources of MPs: residential wastewater at the headwater site and non-point sources from urban areas at downstream sites; concentrations of chemical contaminants from STPs were much higher at the downstream sites. The median particle sizes (D₅₀) of MPs increased in urban areas at the downstream sites and were larger than those in influent and effluent. These results imply the release of larger MPs from non-point sources in urban areas. The size distributions of each polymer and all MPs could be fitted significantly to the Weibull distribution function. Values of D₅₀, shape parameters, and scale parameters estimated from the functions were useful indicators for evaluating size distributions in detail. A significant positive correlation of D₅₀ with the tensile strengths of virgin polymers among 13 dominant polymers detected in the surface water suggests that the fragmentation properties of each polymer are influenced by its physical strength. Multidimensional analysis with concentrations, polymeric compositions, and size distributions of MPs, including FMPs, could provide useful information about their sources and their environmental behaviors.
Show more [+] Less [-]An assessment of contamination fingerprinting techniques for determining the impact of domestic wastewater treatment systems on private well supplies
2021
Fennell, Christopher | Misstear, Bruce | O’Connell, David | Dubber, Donata | Behan, Patrice | Danaher, Martin | Moloney, Mary | Gill, Laurence
Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated.
Show more [+] Less [-]Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China
2020
Zhang, Guodong | Lu, Shaoyong | Wang, Yongqiang | Liu, Xiaohui | Liu, Ying | Xu, Jiamin | Zhang, Tingting | Wang, Zhi | Yang, Yong
The overuse and misuse of antibiotics could promote the emergence of antibiotic resistance genes (ARGs) and pose a potential risk to human health and the ecological environment. In this study, fifteen antibiotics and their corresponding ARGs in water, sediment and sewage treatment plant (STP) effluent were analysed to investigate their occurrence and correlation in the Yangtze River (Jiangsu section) for the first time. The concentrations of erythromycin-H₂O (EM-H₂O) (2.08–30 ng L⁻¹) and ofloxacin (OFL) (290–8400 ng kg⁻¹) were the highest in the water and sediment, respectively, and EM-H₂O and clarithromycin (CLA) posed the highest risks to aquatic organisms. The concentrations of antibiotics in STP effluent were significantly higher (p < 0.05) than those in the water. Norfloxacin (NOR) was the most predominant antibiotic, with low removal efficiency (−38%-51%), in STPs; the concentration of NOR in the STP effluent was 4–6 orders of magnitude higher than that in the water. Moreover, the concentrations of antibiotics and their corresponding ARG abundance in downstream were higher than those in upstream, suggesting that STPs with high concentration levels might be an important source of river contamination. Additionally, the concentrations of antibiotics and the abundance of ARGs might increase after the sewage treatment process. The results also showed the prevalence of sul1 and sul2 in all the sampling sites. Significant correlations (p < 0.0001) were detected between int1 and sul1 and sul2, which resulted from the contribution of int1 to the propagation of ARGs. Overall, this study demonstrated the prevalence of antibiotics and ARGs and their inconsistent correlations in the Yangtze River (Jiangsu section) and provides support for further investigation of the occurrence and spread of antibiotics and ARGs.
Show more [+] Less [-]Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
Show more [+] Less [-]Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river
2020
Yuan, Xiao | Hu, Jiatang | Li, Shiyu | Yu, Mianzi
The identification and quantification of pharmaceutical and personal care products (PPCPs) in aquatic ecosystems is critical to further studies and elucidation of their fate as well as the potential threats to aquatic ecology and human health. This study used mass balances to analyse the sources, transformation, and transport of PPCPs in rivers based on the population and consumption habits of residents, the removal level of sewage treatment, the persistence and partitioning mechanisms of PPCPs, hydrological conditions, and other natural factors. Our results suggested that in an urbanized river of Guangzhou City, China, the daily consumption of PPCPs was the main reason for the variety of species and concentrations of PPCPs. Through the determination of PPCPs in the river water samples and a central composite design (CCD) methodology, the dominant elimination mechanisms of caffeine and carbamazepine from river water were photolysis and biodegradation, but that of triclosan was sorption rather than biodegradation. The mass data of 3 PPCPs were estimated and corroborated using the measured data to evaluate the accuracy of the mass balance. Finally, caffeine, carbamazepine and triclosan discharged from the Shijing River into the Pearl River accounted for 97.81%, 99.52%, and 28.00%, respectively, of the total mass of these three compounds in the surface water of Shijing River. The results suggest that photolysis are the main process of natural attenuation for selected PPCPs in surface waters of river systems, and the transfer processes of PPCPs is mainly attributed to riverine advection. In addition, the low concentration of dissolved oxygen inhibited the degradation of PPCPs in the surface water of Shijing River.
Show more [+] Less [-]The effects of biodegradation on the characteristics and disinfection by-products formation of soluble microbial products chemical fractions
2019
Wu, Meirou | Liang, Yongmei | Zhang, Yuguang | Xu, Haixing | Liu, Wei
Soluble microbial products (SMPs) discharged into rivers from sewage treatment plants may increase the health risk for downstream drinking water by acting as a precursor of DBPs. Biotransformation or biodegradation could alter the characteristics of SMPs and affect the subsequent formation of DBPs. This study observed the relative contribution of chemical fractions in SMPs and explored the biodegradation of each fraction and their effect on disinfection by-products (DBPs) formation in surface water. The hydrophilic acid (HPIA) and hydrophobic acid (HPOA) constituted the major portion of the SMPs, which were dominated by fulvic acid and humic acids. The transphilic acid (TPIA) and hydrophobic bases (HPOB) were relatively minor but it contained a relative substantial portion of protein-like materials in SMPs. TPIA and HPOB produced insignificant amounts of DBP corresponding to 13% and 14% in the original samples, but they were collectively responsible for 50% of the DBPs yield. Much larger amounts of hydrophobic fractions were utilized than hydrophilic fractions after biodegradation. The increase in SUVA values indicating aromatic structures, except for HPOA fraction, was observed after biodegradation. The protein-like materials in both the HPOA and HPIA fractions and polycarboxylate-type humic acid in the HPIA fraction decreased but the enrichment of HPOA (MW > 100 kDa) and TPIA (MW < 1 kDa) was observed after biodegradation. The production of = C–H in HPIA fraction and the appearance of double peak at 1100 cm⁻¹ in TPIA and HPOB fractions occurred after biodegradation. In overall level, microorganisms effectively utilized DBP precursors from HPIA, HPOA and HPOB fractions but increased the DBPs precursors from the TPIA fraction. TPIA and HPOB fractions had higher DBP yield with chlorine but the DBPs yield of HPIA and HPOA changed little after biodegradation.
Show more [+] Less [-]