Refine search
Results 1-10 of 98
The carbon budget of Canadian forests: A sensitivity analysis of changes in disturbance regimes, growth rates, and decomposition rates.
1994
Kurz W.A. | Apps M.J.
Simulation of the long-term soil response to acid deposition in various buffer ranges.
1989
Vries W. de | Posch M. | Kaemaeri J.
Use of a chemical equilibrium model to understand soil chemical processes that influence soil solution and surface water alkalinity.
1988
David M.B. | Reuss J.O. | Walthall P.M.
Assessment of the interactions of metals and nitrilotriacetic acid in soil/sludge mixtures.
1987
Garnett K. | Kirk P.W.W. | Lester J.N. | Perry R.
Changes in chemistry and mineralogy of forest soils by acid rain.
1992
Rampazzo N. | Blum W.E.H.
Comparative kinetic desorption of 60Co, 85Sr and 134Cs from a contaminated natural silica sand column: Influence of varying physicochemical conditions and dissolved organic matter Full text
2006
Solovitch-Vella, N. | Garnier, J.-M. | Laboratoire d'étude radioécologique du milieu continental et marin (IRSN/DEI/SESURE/LERCM) ; Service d'étude et de surveillance de la radioactivité dans l'environnement (IRSN/DEI/SESURE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
International audience | In order to determine the mechanisms of the retention of 60Co, 85Sr and 134Cs in natural silica sand columns, desorption experiments were performed by changes of pH and ionic strength and by injection of natural organic matter (NOM). Injection of KCl (0.1 M) resulted in a high release of 60Co (60-100%) and 85Sr (72-100%) but a smaller release of 134Cs (31-66%). Only limited release of 60Co (66%) and 85Sr (71%) and no release of 134Cs were observed by injection of NOM. The different percentages of desorption were related to the chemical characteristics of the organic colloids previously retained in columns before the desorption step. The results evidenced different sorption processes on energetically heterogeneous surface sites. According to the initial conditions, the binding of the radionuclides to the solid phase resulted from weak and easily reversible sorption processes to strong association probably by inner sphere complexes. The rather weak release of 134Cs by KCl was attributed to the strong retention of 134Cs by clay coatings on the natural silica sand surfaces. © 2005 Elsevier Ltd. All rights reserved.
Show more [+] Less [-]Soil acidification in Swiss forest ecosystems
2002
Braun, S. (Institute for Applied Plant Biology, Schonenbuch, (Switzerland)) | Kurz, D. | Fluckiger, W.
Soil water measurements in Swiss forest plots show a decrease of the ratio between base cations and aluminium within last 4 years. The decrease is significant in at least one soil layer in 12 of 14 plots and is strongest in areas with high acid deposition. In some of the soils the critical ratio of 1 is being reached today. The development is compared with model estimates. In Switzerland, 80% of acid deposition is made up by nitrogen compounds
Show more [+] Less [-]Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil Full text
2018
Excess exposure to fluoride causes substantive health burden in humans and livestock globally. However, few studies have assessed the distribution and controls of variability of ambient background concentrations of fluoride in soil. Ambient background concentrations of fluoride in soil were collated for Greater Melbourne, Greater Geelong, Ballarat and Mitchell in Victoria, Australia (n = 1005). Correlation analysis and machine learning techniques were used to identify environmental and anthropogenic influences of fluoride variability in soil. Sub-soils (>0.3 m deep), in some areas overlying siltstone and sandstone, and to a lesser extent, overlying basalt, were naturally enriched with fluoride at concentrations above ecological thresholds for grazing animals. Soil fluoride enrichment was predominantly influenced by parent material (mineralogy), precipitation (illuviation), leaching during palaeoclimates and marine inputs. Industrial air pollution did not significantly influence ambient background concentrations of fluoride at a regional scale. However, agricultural practices (potentially the use of phosphate fertilisers) were indicated to have resulted in added fluoride to surface soils overlying sediments. Geospatial variables alone were not sufficient to accurately model ambient background soil fluoride concentrations. A multiple regression model based on soil chemistry and parent material was shown to accurately predict ambient background fluoride concentrations in soils and support assessment of fluoride enrichment in the environment.
Show more [+] Less [-]Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils Full text
2016
Braaten, Hans Fredrik Veiteberg | de Wit, Heleen A.
Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils Full text
2016
Braaten, Hans Fredrik Veiteberg | de Wit, Heleen A.
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg.
Show more [+] Less [-]Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils Full text
2016
Braaten, Hans Fredrik Veiteberg | de Wit, Heleen A.
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. | acceptedVersion
Show more [+] Less [-]Lichens as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles Full text
2010
Augusto, Sofia | Máguas, Cristina | Matos, João Luís de | Pereira, Maria João | Branquinho, Cristina
The aim of this study was to validate lichens as biomonitors of PAH atmospheric deposition; for that, an inter-comparison between the PAH profile and concentrations intercepted in lichens with those of air, soil and pine needles was performed. The study was conducted in a petro-industrial area and the results showed that PAH profiles in lichens were similar to those of the air and pine needles, but completely different from those of soils. Lichens accumulated higher PAH concentrations when compared to the other environmental compartments and its concentrations were significantly and linearly correlated with concentrations of PAHs in soil; we showed that a translation of the lichen PAHs concentrations into regulatory standards is possible, fulfilling one of the most important requirements of using lichens as biomonitors. With lichens we were then able to characterize the air PAHs profile of urban, petro-industrial and background areas. Lichen PAH concentrations can identify geographic areas that may be out of compliance with regulatory standards.
Show more [+] Less [-]