Refine search
Results 1-10 of 495
Nitrogen deposition threatens species richness of grasslands across Europe
2010
Stevens, Carly J. | Dupre, Cecilia | Dorland, Edu | Gaudnik, Cassandre | Gowing, David J.G. | Bleeker, Albert | Diekmann, Martin | Alard, Didier | Bobbink, Roland | Fowler, David | Corcket, Emmanuel | Mountford, J. Owen | Vandvik, Vigdis | Aarrestad, Per Arild | Muller, Serge | Dise, Nancy B. | Open University | Lancaster Environment Centre ; Lancaster University | Universität Bremen [Deutschland] = University of Bremen [Germany] = Université de Brême [Allemagne] | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Department of Air Quality and Climate Change ; Energy Research Centre for the Netherlands | Radboud University [Nijmegen] | Natural Environment Research Council (NERC) | Department of Biology ; University of Washington [Seattle] | Norwegian Institute for Nature Research (NINA) | Centre National de la Recherche Scientifique (CNRS) | University of Manchester [Manchester]
International audience | Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2–44 kg N ha−1 yr−1) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range. Atmospheric nitrogen deposition is reducing biodiversity in grasslands across Europe.
Show more [+] Less [-]The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe
2011
Stevens, Carly J. | Dupre, Cecilia | Dorland, Edu | Gaudnik, Cassandre | Gowing, David J.G. | Bleeker, Albert | Diekmann, Martin | Alard, Didier | Bobbink, Roland | Fowler, David | Corcket, Emmanuel | Mountford, J. Owen | Vandvik, Vigdis | Aarrestad, Per Arild | Muller, Serge | Dise, Nancy B. | Open University | Lancaster Environment Centre ; Lancaster University | Universität Bremen [Deutschland] = University of Bremen [Germany] = Université de Brême [Allemagne] | Universiteit Utrecht / Utrecht University [Utrecht] | Biodiversité, Gènes & Communautés (BioGeCo) ; Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB) | Energy Research Centre of the Netherlands (ECN) | Radboud University [Nijmegen] | Natural Environment Research Council (NERC) | Department of Biology ; University of Washington [Seattle] | Norwegian Institute for Nature Research (NINA) | Université Paul Verlaine - Metz (UPVM) | Manchester Metropolitan University (MMU) | European Science Foundation; DfG (Germany); NERC (United Kingdom); NWO (The Netherlands); INRA; ADEME; Aquitaine Region (France)
International audience | A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2–44 kg N ha−1 yr−1) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.
Show more [+] Less [-]Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications
2022
Santini, G. | Acconcia, S. | Napoletano, M. | Memoli, V. | Santorufo, L. | Maisto, G.
Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred.
Show more [+] Less [-]Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community
2022
Zhou, Xueqi | Shi, An | Rensing, Christopher | Yang, Jing | Ni, Wuzhong | Xing, Shihe | Yang, Wenhao
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%–148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1–21.4%, 29.1–42.7%,12.2–38.3% and 26.8–85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Show more [+] Less [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
Show more [+] Less [-]Elevation of NO3−-N from biochar amendment facilitates mitigating paddy CH4 emission stably over seven years
2022
Nan, Qiong | Fang, Chenxuan | Cheng, Linqi | Hao, Wang | Wu, Weixiang
Biochar application into paddy is an improved strategy for addressing methane (CH₄) stimulation of straw biomass incorporation. Whereas, the differentiative patterns and mechanisms on CH₄ emission of straw biomass and biochar after long years still need to be disentangled. Considering economic feasibility, a seven-year of field experiment was conducted to explore the long-term CH₄ mitigation effect of annual low-rate biochar incorporation (RSC, 2.8 t ha⁻¹), with annual rice straw incorporation (RS, 8 t ha⁻¹) and control (CK, with no biochar or rice straw amendment incorporation) as a comparation. Results showed that RSC mitigated CH₄ emission while RS stimulated CH₄ significantly (p < 0.05) and stably over 7 experimental years compared with CK. RSC mitigated 14.8–46.7% of CH₄ emission compared with CK. In comparison to RSC, RS increased 111–950.5% of CH₄ emission during 7 field experimental years. On the 7th field experimental year, pH was significantly increased both in RS and RSC treatment (p < 0.05). RSC significantly (p < 0.05) increased soil nitrate (NO₃⁻-N) compared with RS while RS significantly (p < 0.05) increased dissolved carbon (DOC) compared to RSC. Soil NO₃⁻-N inhibition on methanogens and promotion on methanotrophs activities were verified by laboratory experiment, while soil pH and DOC mainly promoted methanogens abundance. Significantly (p < 0.05) increased DOC and soil pH enhanced methanogens growth and stimulated CH₄ emission in RS treatment. Higher soil NO₃⁻-N content in RSC than CK and RS contributed to CH₄ mitigation. Soil NO₃⁻-N and DOC were identified as the key factors differentiating CH₄ emission patterns of RS and RSC in 2019. Collectively, soil NO₃⁻-N impacts on CH₄ flux provide new ideas for prolonged effect of biochar amendment on CH₄ mitigation after years.
Show more [+] Less [-]Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems
2022
Yin, Zerun | Sheng, Hao | Xiao, Huacui | Xue, Yi | Man, Zhiyong | Huang, Dezhi | Zhou, Qing
The alkaline mineral amendment is a practical means of alleviating Cd concentration in rice grain (CdR) in the short-term; however, the long-term remediation effect of mineral amendment on the CdR and the eco-environmental controls remains unknown. Here a mineral (Si–Ca–Mg) amendment, calcined primarily from molybdenum tailings and dolomite, was applied biannually over 6 years (12 seasons) to acidic and moderately Cd-contaminated double-rice cropping ecosystems. This study investigated the inter-annual variation of Cd in the rice-soil ecosystem and the eco-environmental controls in subtropical rice ecosystems. CdR was reduced by 50%–86% following mineral amendment. The within-year reduction in CdR was similar between early rice (50%–86%, mean of 68%) and late rice (68%–85%, mean of 74%), leading to CdR in all early rice and in 83% of late rice samples below the upper limit (0.2 mg kg⁻¹) of the China National Food Safety Standards. In contrast, the inter-annual reduction in CdR was moderately variable, showing a greater CdR reduction in the later 3 years (73%–86%) than in the former 3 years (54%–79%). Three years continuous mineral amendment was required to guarantee the safety rice production. The concentrations of DTPA-extractable and exchangeable Cd fractions in soil were reduced, while the concentration of oxides-bound Cd was increased. In addition, the soil pH, concentrations of Olsen-P and exchangeable Ca and Mg were elevated. These imply a lower apparent phytoavailability of Cd in the soil following mineral amendment. An empirical model of the 3-variable using soil DTPA-Cd, soil Olsen-P, and a climatic factor (precipitation) effectively predicted temporal changes in CdR. Our study demonstrates that Cd phytoavailability in soil (indexed by DTPA-extractable Cd) and climatic factors (e.g., temperature and precipitation) may directly/indirectly control the inter-annual reduction in CdR following mineral amendment in slightly and moderately Cd-contaminated paddy ecosystems.
Show more [+] Less [-]Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review
2021
Khan, Imran | Awan, Samrah Afzal | Rizwan, Muhammad | Ali, Shafaqat | Zhang, Xinquan | Huang, Linkai
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
Show more [+] Less [-]Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies
2021
Growing applications of nanoagrichemicals have resulted in their increasing accumulation in agricultural soils, which could modify soil properties and affect soil health. A greenhouse pot trial was conducted to determine the effects of three metallic nanoagrichemicals on several fundamental chemical properties of a rice paddy soil, including zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) at 100 mg/kg, and silicon oxide nanoparticles (SiO₂ NPs) at 500 mg/kg, as well as their bulk and ionic counterparts. The investigated soil amendments displayed significant and distinctive impact on the examined soil chemical properties relevant to agricultural production, including soil pH, redox potential, soil organic carbon (SOC), cation exchange capacity (CEC), and plant available As. For example, all amendments increased the bulk soil pH at day 47 to some extent, but the increase was substantially higher for SiO₃²⁻ (37.7%) than other amendments (5.8%–13.7%). Soil Eh was elevated markedly at day 47 after the addition of soil amendments in both the bulk soil (45.9%–74.4%) and rice rhizosphere soil (20.3%–68.9%). CuO NPs and Cu²⁺ generally exhibited greater impact on soil chemical properties than other agrichemicals. Significantly different responses to soil amendments were observed between bulk and rhizosphere soils, suggesting the essential role of plants in affecting soil properties and their responses to environmental disturbance. Overall, our results confirmed that the tested amendments could have remarkable impacts on the fundamental chemical properties of rice paddy soils.
Show more [+] Less [-]Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China
2021
Bai, Xinlu | Jiang, Yun | Miao, Hongzhi | Xue, Shaoqi | Chen, Zhujun | Zhou, Jianbin
A comprehensive understanding of the patterns and controlling factors of nitrate accumulation in intensive vegetable production is essential to solve this problem. For the first time, the national patterns and controlling factors of nitrate accumulation in soil of vegetable systems in China were analysed by compiling 1262 observations from 117 published articles. The results revealed that the nitrate accumulation at 0–100 cm, 100–200 cm, 200–300 cm, and >300 cm were 504, 390, 349, and 244 kg N ha⁻¹, with accumulation rates of 62, 54, 19, and 16 kg N ha⁻¹ yr⁻¹ for plastic greenhouse vegetables (PG); for open field vegetables (OF), they were 264, 217, 228, and 242 kg N ha⁻¹ with accumulation rates of 26, 24, 18, and 10 kg N ha⁻¹ yr⁻¹, respectively. Nitrate accumulation at 0–100 cm, 0–200 cm, and 0–400 cm accounted for 5%, 11%, and 17% of accumulated nitrogen (N) inputs for PG, and represented 4%, 9%, and 13% of accumulated N inputs for OF. Nitrogen input rates and soil pH had positive effects and soil organic carbon, water input rate, and carbon to nitrogen ratio (C/N) had negative effects on nitrate accumulation in root zone (0–100 cm soil). Nitrate accumulation in deep vadose zone (>100 cm soil) was positively correlated with N and water input rates, and was negatively correlated with soil organic carbon, C/N, and the clay content. Thus, for a given vegetable soil with relatively stable soil pH and soil clay content, reducing N and water inputs, and increasing soil organic carbon and C/N are effective measures to control nitrate accumulation.
Show more [+] Less [-]