Refine search
Results 1-10 of 90
Capturing spatial variability of factors affecting the water allocation plans—a geo-informatics approach for large irrigation schemes
2022
Waqas, M. M. | Waseem, M. | Ali, S. | Hopman, J. W. | Awan, Usman Khalid | Shah, S. H. H. | Shah, A. N.
Capturing spatial variability of factors affecting the water allocation plans—a geo-informatics approach for large irrigation schemes
2022
Waqas, M. M. | Waseem, M. | Ali, S. | Hopman, J. W. | Awan, Usman Khalid | Shah, S. H. H. | Shah, A. N.
The livelihoods of poor people living in rural areas of Indus Basin Irrigation System (IBIS) of Pakistan depend largely on irrigated agriculture. Water duties in IBIS are mainly calculated based on crop-specific evapotranspiration. Recent studies show that ignoring the spatial variability of factors affecting the crop water requirements can affect the crop production. The objective of the current study is thus to identify the factors which can affect the water duties in IBIS, map these factors by GIS, and then develop the irrigation response units (IRUs), an area representing the unique combinations of factors affecting the gross irrigation requirements (GIR). The Lower Chenab Canal (LCC) irrigation scheme, the largest irrigation scheme of the IBIS, is selected as a case. Groundwater quality, groundwater levels, soil salinity, soil texture, and crop types are identified as the main factors for IRUs. GIS along with gamma design software GS + was used to delineate the IRUs in the large irrigation scheme. This resulted in a total of 84 IRUs in the large irrigation scheme based on similar biophysical factors. This study provided the empathy of suitable tactics to increase water management and productivity in LCC. It will be conceivable to investigate a whole irrigation canal command in parts (considering the field-level variations) and to give definite tactics for management.
Show more [+] Less [-]Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations
2021
Fischer, Jonas | Evlanova, Anna | Philippe, Allan | Filser, Juliane
Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil. Therefore, there is a knowledge gap concerning the effect of soil texture on the toxicity of CuO-NP at lower, more realistic test concentrations. In our study, a sandy reference soil and three loamy soils were spiked with CuO-NP at up to four concentrations, ranging from 5 to 158 mg Cu/kg. We investigated 28-day reproduction as well as weight and Cu content after 14-day bioaccumulation and subsequent 14-day elimination for the springtail Folsomia candida. For the first time we analysed the size distribution of CuO-NP in aqueous test soil extracts by single particle-ICP-MS which revealed that the diameter of CuO-NP significantly increased with increasing concentration, but did not vary between test soils. Negative effects on reproduction were only observed in loamy soils, most pronounced in a loamy-acidic soil (−61%), and they were always strongest at the lowest test concentration. The observed effects were much stronger than reported by other studies performed with sandy soils and higher CuO-NP concentrations. In the same soil and concentration, a moderate impact on growth (−28%) was observed, while Cu elimination from springtails was inhibited. Rather than Cu body concentration, the diameter of the CuO-NP taken up, as well as NP-clay interactions might play a crucial role regarding their toxicity. Our study reports for the first time toxic effects of CuO-NP towards a soil invertebrate at a low, realistic concentration range. The results strongly suggest including lower test concentrations and a range of soil types in nanotoxicity testing.
Show more [+] Less [-]A field study of the fate of biosolid-borne silver in the soil-crop system
2020
Yang, Lu | Li, Simin | Wu, Longhua | Ma, Yibing | Christie, Peter | Luo, Yongming
Land application of biosolids is a major route for the introduction of silver (Ag) into the terrestrial environment. Previous studies have focused on the risks from Ag to the human food chain but there is still a lack of quantitative information on the flow of biosolid-borne Ag in the soil-crop system. Two long-term field experiments were selected to provide contrasting soil properties and tillage crops to investigate the fate of Ag from sequentially applied biosolids. Biosolid-borne Ag accumulated in the soil and < 1‰ of applied Ag was taken up by the crops. The biosolid-borne Ag also migrated down and accumulated significantly (p < 0.05) in the soil profile to a depth of 60–80 cm at an application rate of 72 t biosolids ha⁻¹. Soil texture significantly affected the downward transport of biosolid-borne Ag and the migration of Ag appeared to be more pronounced in a soil profile with a low clay content. Moreover, loss of Ag by leaching may not be related to the biosolid application rate. Leaching losses of Ag may have continued for some time after biosolid amendment was suspended. The results indicate that soil texture may be a key factor affecting the distribution of biosolid-borne Ag in the soil-crop system.
Show more [+] Less [-]Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically-weathered soil columns
2019
Moradi, A. | Mosaddeghi, M.R. | Chavoshi, E. | Safadoust, A. | Soleimani, M.
Knowledge of the transport and fate of pathogenic Escherichia coli, especially in the areas contaminated with crude oil, is required to assess contamination of shallow groundwater resources. The present study aims to investigate the effect of crude oil-mediated water repellency on the movement of nalidixic acid-resistant Escherichia coli strain (E. coli NAR) and bromide (Br) as an inert tracer in two soil types. The soils were contaminated at three levels of 0, 0.5 and 1% w/w of total petroleum hydrocarbons (TPHs) using crude oil. Steady-state saturated flow in the soil columns was controlled using a tension infiltrometer. Leaching experiments were conducted through the columns of repacked (un-weathered) and physically-weathered clay loam (CL) and sandy loam (SL) soils. The columns leachate was sampled at specific times for 4 pore volumes. The shape of breakthrough curves for the E. coli NAR and Br depended on soil texture and structure and the TPHs level. Preferential flow in the crude oil-mediated water-repellent soils facilitated the transport of contaminants especially E. coli NAR. Filtration coefficient and relative adsorption index of bacteria were greatest in the repacked CL soils and were lowest in the weathered SL soils. Discontinuity of soil pores and lower flow velocity resulted in greater filtration of E. coli NAR in the repacked CL soil than other treatments. Physical weathering induced the formation of aggregates which reduced soil particle surfaces available for retention of water-repellent oil and contaminants. Movement of both bacteria and Br tracer in the weathered SL soil with 1% TPHs was higher than other treatments. This finding was attributed to low specific surface area, continuity of the pores and water repellency-mediated preferential pathways in the weathered SL soil columns. Our findings implied that shallow groundwater resources could be very sensitive to microbial contamination particularly in the oil-mediated water-repellent soils.
Show more [+] Less [-]Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun
2018
Deng, Songqiang | Ke-tan, | Li, Longtai | Cai, Shenwen | Zhou, Yuyue | Liu, Yue | Guo, Limin | Chen, Lanzhou | Zhang, Dayi
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
Show more [+] Less [-]Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils?
2014
Beaumelle, Léa | Lamy, Isabelle | Cheviron, Nathalie | Hedde, Mickaël
Generic biomarkers are needed to assess environmental risks in metal polluted soils. We assessed the strength of the relationship between earthworm energy reserves and metal availability under conditions of cocktail of metals at low doses and large range of soil parameters. Aporrectodea caliginosa was exposed in laboratory to a panel of soils differing in Cd, Pb and Zn total and available (CaCl2 and EDTA-extractable) concentrations, and in soil texture, pH, CEC and organic-C. Glycogen, protein and lipid contents were recorded in exposed worms. Glycogen contents were not linked to the explaining variables considered. Variable selection identified CaCl2 extractable metals concentrations and soil texture as the main factors affecting protein and lipid contents. The results showed opposite effects of Pb and Zn, high inter-individual variability of biomarkers and weak relationships with easily extractable metals. Our results support the lack of genericity of energy reserves in earthworms exposed to field-contaminated soils.
Show more [+] Less [-]Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil
2022
Wang, Weiqi | Wang, Hongmei | Cheng, Xiaoyu | Wu, Mengxiaojun | Song, Yuyang | Liu, Xiaoyan | Loni, Prakash C. | Tuovinen, O. H.
Bacterial communities in antimony (Sb) polluted soils have been well addressed, whereas the important players fungal communities are far less studied to date. Here, we report different responses of bacterial and fungal communities to Sb contamination and the ecological processes controlling their community assembly. Soil samples in the Xikuangshan mining area were collected and subjected to high through-put sequencing of 16S rRNA and ITS1 to investigate bacterial and fungal communities, respectively, along an Sb gradient. Sb speciation in the soil samples and other physicochemical parameters were analyzed as well. Bacterial communities were dominated by Deltaproteobacteria in the soil with highest Sb concentration, whereas Chloroflexi were dominant in the soil with lowest Sb concentration. Fungal communities in high-Sb soils were predominated by unclassified Fungi, whilst Leotiomycetes were dominant in low-Sb soil samples. Multivariate analysis indicated that Sb, pH and soil texture were the main drivers to strongly impact microbial communities. We further identified Sb-resistant microbial groups via correlation analysis. In total, 18 bacterial amplicon sequence variants (ASVs) were found to potentially involve in biogeochemical cycles such as Sb oxidation, sulfur oxidation or nitrate reduction, whereas 12 fungal ASVs were singled out for potential heavy metal resistance and plant growth promotion. Community assembly analysis revealed that variable selection contributed 100% to bacterial community assembly under acidic or high Sb concentration conditions, whereas homogeneous selection dominated fungal community assembly with a contribution over 78.9%. The community assembly of Sb-resistant microorganisms was mainly controlled by stochastic process. The results offer new insights into microbial ecology in Sb-contaminated soils, especially on the different responses of microbial communities under identical environmental stress and the different ecological processes underlining bacterial and fungal community assembly.
Show more [+] Less [-]Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties
2020
Kim, Shin Woong | Kim, Dasom | Jeong, Seung-Woo | An, Youn-Joo
Plastic polymers are widely used in various applications and are thus prevalent in the environment. Over time, these polymers are slowly degraded into nano- and micro-scale particles. In this study, the free-living nematode, Caenorhabditis elegans, was exposed to polystyrene particles of two different sizes (42 and 530 nm) in both liquid and soil media. The number of offspring significantly (p < 0.05) decreased at polystyrene concentrations of 100 mg/L and 10 mg/kg in liquid and soil media, respectively. In soil media, but not liquid media, C. elegans was more sensitive to the larger particles (530 nm) than the smaller particles (42 nm), and the median effective concentration (EC₅₀) values of the 42 and 530 nm-sized particles were found to be > 100 and 14.23 (8.91–22.72) mg/kg, respectively. We performed the same toxicity bioassay on five different field-soil samples with different physicochemical properties and found that the size-dependent effects were intensified in clay-rich soil samples. A principal component analysis showed that the bulk density, cation exchange capacity, clay content, and sand content were the dominant factors influencing the toxicity of the 530 nm-sized polystyrene particles. Therefore, we conclude that the soil composition has a significant effect on the toxicity induced by these 530 nm-sized polystyrene particles.
Show more [+] Less [-]Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation
2016
Zhang, Yuping | Sallach, J Brett | Hodges, Laurie | Snow, Daniel D. | Bartelt-Hunt, Shannon L. | Eskridge, Kent M. | Li, Xu
Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation.
Show more [+] Less [-]