Refine search
Results 1-10 of 257
Ozone symptoms in native herbaceous species in Southern Alps: field assessment and laboratory verification
2002
Gerosa, G. (Universita degli Studi, Milano (Italy). DiProVe) | Marzuoli, R. | Cesana, V. | Ballarin-Denti A. | Bussotti, F.
Small attention has been still addressed to the study of ozone effects on seminatural vegetation. Following this direction we selected an ozone heavily exposed area in Northern Italy, where the development of visible injuries on leaves of common pasture herbs were observed. The selected area, an alpine pasture located at Moggio belongs to the Level II permanent monitoring network of the ICP-Forest program. The ozone exposure mapping exercise made on the whole regional domain estimated for this area an AOT40f of 32000 ppb.h as 1999 and 2000 years average
Show more [+] Less [-]Development trends of forest soils water regime under changing ecological conditions
2002
Tuzinsky, L. (Technical University, Zvolen (Slovak Republic). Forestry Faculty)
Forest ecosystems water balance research is very complicated because of forest influence upon individual components of the water balance. Global climate changes represent a real threat for forest ecosystems. In hydric area these changes concern especially thermal balance and resulting increased evapotranspiration, time and spatial distribution of precipitation
Show more [+] Less [-]Toxicity of historically metal(loid)-contaminated soils to Folsomia candida under the influence of climate change alterations Full text
2022
Silva, Ana Rita R. | Malheiro, Catarina | Loureiro, Susana | González-Alcaraz, M Nazaret
Global warming is drastically altering the climate conditions of our planet. Soils will be among the most affected components of terrestrial ecosystems, especially in contaminated areas. In this study we investigated if changes in climate conditions (air temperature and soil moisture) affect the toxicity of historically metal(loid)-contaminated soils to the invertebrate Folsomia candida, followed by an assessment of its recovery capacity. Ecotoxicity tests (assessing survival, reproduction) were performed in field soils affected by metal(loid)s under different climate scenarios, simulated by individually changing air temperature or soil moisture conditions. The scenarios tested were: standard conditions (20°C + 50% soil water holding capacity-WHC); increased air temperature (daily fluctuation of 20–30°C + 50% WHC); soil drought (20°C + 25% WHC); soil flood (20°C + 75% WHC). Recovery potential was assessed under standard conditions in clean soil. Increased temperature was the major climate condition negatively affecting collembolans performance (decreased survival and reproduction), regardless of metal(loid) contamination. Drought and flood conditions presented less pronounced effects. When it was possible to move to the recovery phase (enough juveniles in exposure phase), F. candida was apparently able to recover from the exposure to metal(loid) contamination and/or climate alterations. The present study showed that forecasted climate alterations in areas already affected by contamination should be considered to improve environmental risk assessment.
Show more [+] Less [-]Correction method of effect of soil moisture on the fluorescence intensity of polycyclic aromatic hydrocarbons based on near-infrared diffuse reflection spectroscopy Full text
2021
Dong, Guimei | Li, Xiaotong | Yang, Renjie | Yang, Yanrong | Liu, Haixue | Wu, Nan
Soil moisture has a strong impact on the fluorescence intensity of PAHs, which is undoubtedly posing a challenge for the development of rapid real-time fluorescence detection technology of PAHs in soil. In this work, NIR diffuse reflectance spectroscopy was used to correct the fluorescence spectra of PAHs in order to reduce the effect of the soil moisture. To establish the correction method, eight soil samples with different moisture contents and a given phenanthrene concentration (8 mg/g) were prepared. The fluorescence and NIR diffuse reflectance spectra were collected for of all samples. It was found that the fluorescence spectra of the soil samples that vary with the moisture content together with the NIR diffuse reflectance spectra were considered for the correction of the fluorescence intensity of phenanthrene related to the moisture content. The results showed that the ratio of the fluorescence intensity at 384 nm to the NIR diffuse reflectance spectrum absorbance at 5184 cm⁻¹ can be used as a correction factor to reduce the effect of the soil moisture on the fluorescence intensity of phenanthrene in the soil. The validity of the correction method was verified by the quantitative analysis of PAHs with different concentrations and soil moisture contents. The results showed better linearity between the fluorescence intensity and the concentration of PAHs after the correction (with a correlation coefficient R of 0.99) than before the correction (with R of 0.86). The relative prediction errors for three unknown samples decreased from 19%, 51% and 40% before the correction to 5%, 13% and 0.44% after the correction, respectively, indicating the feasibility of the detection of PAHs in the soil by the combination of fluorescence and NIR diffuse reflectance spectroscopy.
Show more [+] Less [-]Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation Full text
2021
Li, Yanyan | Gao, Xiaopeng | Tenuta, Mario | Gui, Dongwei | Li, Xiangyi | Zeng, Fanjiang
It remains unclear how the source and rate of nitrogen (N) fertilizers affect N₂O concentration and effluxes along the soil profile under the drip-fertigated agricultural system. A plot-based field study was performed in 2017 and 2018 in a cotton field in arid northwestern China, with an objective to elucidate the impact of the applications of conventional urea (Urea), polymer-coated urea (ESN) and stabilized urea (SuperU) at rates of 120 and 240 kg N ha⁻¹ on concentration and efflux of N₂O in the soil profile and its relationship with N₂O surface emissions. The in-situ N₂O concentrations at soil depths of 5, 15, 30 and 60 cm were measured and used to estimate soil profile N₂O effluxes. Estimates of surface N₂O flux using the concentration gradient-based (GM) were compared with those measured using the chamber-based (CM) method. In both years, soil N₂O concentrations at all depths increased in response to basal N application at planting or in-season fertigation events. However, N rate or source did not affect soil N₂O concentrations or effluxes at each depth. Surface emissions of N₂O were mostly associated with that presented in the top layer of 0–15 cm. Surface N₂O efflux determined by GM was poorly or not associated with those of chamber measurements, which was attributed to the low N₂O production restricted by soil moisture condition under the drip-fertigated condition. These results highlight the challenge of applying the enhanced efficiency N fertilizer products in the drip-fertigated agricultural system.
Show more [+] Less [-]Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India Full text
2021
Surinaidu, L. | Nandan, M.J. | Sahadevan, D.K. | Umamaheswari, A. | Tiwari, V.M.
Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources. However, these techniques may lead to ambiguous results and fail to identify the seepage sources, especially when the area is urbanized/paved, and groundwater is already contaminated with other leakage sources that have similar chemical compounds. In the present study, a novel and multidisciplinary approach were adopted that includes satellite-based Land Surface Temperature (LST) observations, field-based Electrical Resistivity Tomography (ERT), continuous Soil Electrical Conductivity (SEC) and Volumetric Soil Moisture (VSM%) measurements along with groundwater levels monitoring to identify the sources and to control the seepage. The integrated results identified that the locations with the Standard Thermal Anomaly (STA) in the range of −0.5 to -1 °C, VSM% >50%, SEC > 1.5 mS/cm, bulk resistivity < 12 Ω m with shallow groundwater levels < 3 m below ground level (bgl) are potentially contaminated perennial seepage sources. Impermeable sheet piles have been installed across the groundwater flow direction to control the seepage up to 1.5 m bgl, where groundwater frequently intercepts land surface. The quantity of dry season groundwater seepage has been declined by 79.2% after these interventions, which in turn minimized the treatment cost of 1,96,283 USD/year and improved the downstream ecosystem.
Show more [+] Less [-]Magnetic poly(β-cyclodextrin) combined with solubilizing agents for the rapid bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils Full text
2021
Qin, Shibin | Qi, Shihua | Li, Xiaoshui | Shi, Qiuyun | Li, Huan | Mou, Xiaoxuan | Zhang, Yuan
The rapid determination of the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soils is challenging due to their slow desorption rates and the insufficient extraction efficiency of the available methods. Herein, magnetic poly(β-cyclodextrin) microparticles (Fe₃O₄@PCD) were combined with hydroxypropyl-β-cyclodextrin (HPCD) or methanol (MeOH) as solubilizing agents to develop a rapid and effective method for the bioaccessibility measurement of PAHs. Fe₃O₄@PCD was first validated for the rapid and quantitative adsorption of PAHs from MeOH and HPCD solutions. The solubilizing agents were then coupled with Fe₃O₄@PCD to extract PAHs from soil-water slurries, affording higher extractable fractions than the corresponding solution extraction and comparable to or higher than single Fe₃O₄@PCD or Tenax extraction. The desorption rates of labile PAHs could be markedly accelerated in this process, which were 1.3–12.0 times faster than those of single Fe₃O₄@PCD extraction. Moreover, a low HPCD concentration was sufficient to achieve a strong acceleration of the desorption rate without excessive extraction of the slow desorption fraction. Finally, a comparison with a bioaccumulation assay revealed that the combination of Fe₃O₄@PCD with HPCD could accurately predict the PAH concentration accumulated in earthworms in three field soil samples, indicating that the method is a time-saving and efficient procedure to measure the bioaccessibility of PAHs.
Show more [+] Less [-]Source apportionment of soil heavy metals using robust spatial receptor model with categorical land-use types and RGWR-corrected in-situ FPXRF data Full text
2021
Qu, Mingkai | Chen, Jian | Huang, Biao | Zhao, Yongcun
High-density samples are usually a prerequisite for obtaining high-precision source apportionment results in large-scale areas. In-situ field portable X-ray fluorescence spectrometry (FPXRF) is a fast and cheap way to increase the sample size of soil heavy metals (HMs). Moreover, categorical land-use types may be closely associated with source contributions. However, the above information has rarely been incorporated into the source apportionment. In this study, robust geographically weighted regression (RGWR) was first used to correct the spatially varying effect of the related soil factors (e.g., soil water and soil organic matter) on in-situ FPXRF in an urban-rural fringe of Wuhan City, China, and the correction accuracy of RGWR was compared with those of the traditionally non-spatial multiple linear regression (MLR) and basic GWR. Then, the effect of land-use types on HM concentrations was partitioned using analysis of variance (ANOVA). Last, based on the robust spatial receptor model (i.e., robust absolute principal component scores/RGWR [RAPCS/RGWR]), this study proposed RAPCS/RGWR with categorical land-use types and RGWR-corrected in-situ FPXRF data (RAPCS/RGWR_LU&FPXRF), and its performance was compared with those of RAPCS/RGWR with none or one kind of auxiliary data. Results showed that (i) the performances of the correction models for in-situ FPXRF data were in the order of RGWR > GWR > MLR, and the relative improvement of RGWR over MLR ranged from 52.6% to 70.71% for each HM; (ii) categorical land-use types significantly affected the concentrations of soil Zn, Cu, As, and Pb; (iii) the highest estimation accuracy for source contributions was obtained by RAPCS/RGWR_LU&FPXRF, and the lowest estimation accuracy was obtained by basic RAPCS/RGWR. It is concluded that land-use types and RGWR-corrected in-situ FPXRF data are closely associated with the source contribution, and RAPCS/RGWR_LU&FPXRF is a cost-effective source apportionment method for soil HMs in large-scale areas.
Show more [+] Less [-]Stereoselective accumulations of hexachlorocyclohexanes (HCHs) are correlated with Sphingomonas spp. in agricultural soils across China Full text
2018
Xu, Yang | Niu, Lili | Qiu, Jiguo | Zhou, Yuting | Lu, Huijie | Liu, Weiping
The wide usage of hexachlorocyclohexanes (HCHs) as pesticides has caused soil pollution and adverse health effects through direct contact or bioaccumulation in the food chain. This study quantified major HCH isomers in farmland topsoils across China, and evaluated their correlations with microbial community structure, function, and abiotic variables (e.g., moisture, pH, and temperature). Recalcitrant β-HCH was more abundant than α-, γ-, and δ-HCHs, and α-HCH enantiomeric fractions (EF) were larger than 0.5, indicating preferential degradation of (−)-α-HCH. Sphingomonas was not only a predominant population (especially in samples collected in the south), but also a promising biomarker indicating total- and β-HCH residuals, and EF values of α-HCH. Soil moisture and temperature were among the most influential factors that structured the diversity and function of soil microbial communities. The results suggested that increasing soil moisture (in the range of 5–45%) would benefit the growth of HCH-degrading populations and the enrichment of HCH-degradation related pathways. Revealing the site-specific relationships between topsoil physical, chemical, and microbial properties will benefit the in situ bioremediation of farmlands with relatively low HCH residuals across the world.
Show more [+] Less [-]Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes Full text
2017
Barmentlo, S Henrik | van Gestel, Cornelis A.M. | Álvarez-Rogel, José | González-Alcaraz, M Nazaret
This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) over three generations standardized on physiological time. Generation time was shorter with increasing air temperature and/or soil moisture content. Adult survival was only affected at 30% WHC (∼30% reduction at the highest percentages of polluted soil). Reproduction decreased with increasing percentage of polluted soil in a dose-related manner and over generations. Toxicity increased at 30% WHC (>50% reduction in EC50 in F0 and F1 generations) and over generations in the treatments at 20 °C (40–60% reduction in EC50 in F2 generation). At 25 °C, toxicity did not change when combined with 30% WHC and only slightly increased with 50% WHC. So, higher air temperature and/or reduced soil moisture content does affect the toxicity of soils polluted by metal/metalloid mining wastes to E. crypticus and this effect may exacerbate over generations.
Show more [+] Less [-]