Refine search
Results 1-10 of 469
Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Show more [+] Less [-]The fragmentation of nano- and microplastic particles from thermoplastics accelerated by simulated-sunlight-mediated photooxidation
2022
Song, Young Kyoung | Hong, Sang Hee | Eo, Soeun | Shim, Won Joon
The plastic debris that washes ashore and litters the shoreline often undergoes weathering under sunlight exposure, such that it fragments to form nanoplastics and microplastics, but the fragmentation rate for many thermoplastics is unknown. In this study, three major thermoplastics were exposed to simulated sunlight in an accelerated weathering chamber to evaluate the speed of photooxidation-induced fragmentation. The initiation of photooxidation-induced fragmentation extrapolated from the accelerated weathering chamber to real sunlight exposure in South Korea followed the order of PS (< 1 year) > PP (< 2 years) > LDPE (> 3 years). The surface cracks created by photooxidation were not directly reflected in the initiation of fragmentation of thermoplastics. The initiation of fragmentation was faster in PS than other polymers, but the total abundance of particles produced, and increasing ratio (exposure/non-exposure) were comparable or lower than those of PP. The increasing ratio pattern between nanoplastics and small microplastics of PP differed noticeably from other polymers. The initiation of nanoplastic and small-microplastic fragmentation determined in this study will be useful for the further estimation of secondary microplastic production by weathering and thus for decision-making regarding methods for the timely removal of plastic litter in the environment.
Show more [+] Less [-]Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment
2021
Zhai, Guanzhong | Qi, Lixue | He, Wang | Dai, Jiajun | Xu, Yan | Zheng, Yanmei | Huang, Jiale | Sun, Daohua
The robust and eco-friendly super-hydrophobic sponge with remarkable performances has been potential adsorption material for the treatment of offshore oil spills. In this work, the durable PDMS@SiO₂@WS₂ sponge was fabricated via a green and facile one-step dipping method. The mixed tungsten disulfide (WS₂) microparticles and hydrophobic SiO₂ nanoparticles were immobilized on the sponge by non-toxic polydimethylsiloxane (PDMS) glue tier, which featured the hierarchical structure and extreme water repellency with the water contact angle of 158.8 ± 1.4°. The obtained PDMS@SiO₂@WS₂ sponge exhibits high oil adsorption capacity with 12–112 times of its own weight, and oil/water selectivity with separation efficiency over 99.85%. Notably, when subjected to the complex marine environment including high temperature, corrosive condition, insolation, and strong wind and waves, the modified sponge can maintain sable super-hydrophobicity with water contact angle over 150°. Moreover, it possesses superior mechanical stability for sustainable reusability and oil recovery. The sponge fabricated by non-toxic modifiers along with its sable super-hydrophobicity in complex marine environment makes it a potential material for practical applications.
Show more [+] Less [-]Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution
2021
Gong, Han | Zhu, Wei | Huang, Yumei | Xu, Lijie | Chen, Meijuan | Yan, Muting
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe₂O₄/TiO₂ mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h⁺) were found to contribute to the IBP decay. The presence of SO₄²⁻ showed no significant effect, while NO₃⁻ accelerated the photodegradation, and other anions including HCO₃⁻, Cl⁻, F⁻, and Br⁻ showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]₀:[IBP]₀ = 0.4–4), with reaction rate of 5.3–13.1 and 1.3–2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H₂O₂. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Show more [+] Less [-]Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships
2020
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Calatayud, Vicent
Since the Industrial Revolution, the global ambient O3 concentration has more than doubled. Negative impact of O3 on some common crops such as wheat and soybeans has been widely recognized, but there is relatively little information about maize, the typical C4 plant and third most important crop worldwide. To partly compensate this knowledge gap, the maize cultivar (Zhengdan 958, ZD958) with maximum planting area in China was exposed to a range of chronic ozone (O3) exposures in open top chambers (OTCs). The O3 effects on this highly important crop were estimated in relation to two O3 metrics, AOT40 (accumulated hourly O3 concentration over a threshold of 40 ppb during daylight hours) and POD6 (Phytotoxic O3 Dose above a threshold flux of 6 nmol O3 m−2 s−1 during a specified period). We found that (1) the reduced light-saturated net photosynthetic rate (Asat) mainly caused by non-stomatal limitations across heading and grain filling stages, but the stomatal limitations at the former stage were stronger than those at the latter stage; (2) impact of O3 on water use efficiency (WUE) of maize was significantly dependent on developmental stage; (3) yield loss induced by O3 was mainly due to a reduction in kernels weight rather than in the number of kernels; (4) the performance of AOT40 and POD6 was similar, according to their determination coefficients (R2); (5) the order of O3 sensitivity among different parameters was photosynthetic parameters > biomass parameters > yield-related parameters; (6) Responses of Asat to O3 between heading and gran filling stages were significantly different based on AOT40 metric, but not POD6. The proposed O3 metrics-response relationships will be valuable for O3 risk assessment in Asia and also for crop productivity models including the influence of O3.
Show more [+] Less [-]Observation and estimation of mercury exchange fluxes from soil under different crop cultivars and planting densities in North China Plain
2020
Gao, Yu | Wang, Zhangwei | Zhang, Xiaoshan | Wang, Chunjie
The emission of mercury (Hg) from cropland soil greatly affects the global Hg cycle. Combinations of different crop cultivars and planting densities will result in different light transmittance under canopies, which directly affects the solar and heat radiation flux received by the soil surface below crops. In turn, this might lead to differences in the soil–air total gaseous mercury (TGM) exchange under different cropping patterns. However, soil–air TGM exchange fluxes in croplands under differing canopies have been poorly investigated. Here, a one-year observation of TGM exchange flux was conducted for cropland soils covering five different crop cultivars and three planting densities in North China Plain using the dynamic flux chamber method. The results showed that light transmittance under the canopies was the key control on soil–air TGM exchange fluxes. High light transmittance can enhance soil TGM emission rates and increase the magnitude of diurnal variations in soil–air TGM exchange fluxes. Furthermore, we found that there were piecewise–function relationships (Peak function–constant equation) between light transmittance under the different canopies and the numbers of days after crop sowing. The soil–air TGM exchange fluxes showed a parabolic response to changes in light transmittance under the different canopies. A second-order model was established for the response relationship between soil–air TGM exchange flux and soil Hg concentration, total solar radiation above the canopy, and numbers of days after sowing. The estimated annual average soil–air TGM exchange flux was 5.46 ± 21.69 ng m⁻² h⁻¹ at corn–wheat rotation cropland with 30 cm row spacing using this second-order model. Our results might a data reference and a promising foundation for future model development of soil–air TGM exchange in croplands under different crop cultivars and planting densities.
Show more [+] Less [-]Extensive solar light harvesting by integrating UPCL C-dots with Sn2Ta2O7/SnO2: Highly efficient photocatalytic degradation toward amoxicillin
2020
Le, Shukun | Yang, Weishan | Chen, Gonglai | Yan, Aoyu | Wang, Xiaojing
The carbon dots (C-dots) mediated Sn₂Ta₂O₇/SnO₂ heterostructures with spongy structure were successfully assembled by simple hydrothermal route. The photocatalytic removal efficiency of amoxicillin (AMX, 20 mg L⁻¹) over C-dots/Sn₂Ta₂O₇/SnO₂ was estimated to reach up 88.3% within 120 min simulated solar light irradiating. Meanwhile, the HPLC-MS/MS analysis and density functional theory (DFT) computation were examined to clarify the photo-degradation pathway of AMX. The mechanism investigation proposed that with the modification of C-dots, the photocatalysts improves the utilization of solar energy by harvesting the long wavelength solar light due to their unique up-converted photoluminescence (UCPL). In addition, the porous spongy structure and plenty of tiny C-dots promote the ability of adsorption by enlarged specific surface area. Furthermore, the C-dots mediated Z-type heterojunction of Sn₂Ta₂O₇/SnO₂ facilitates the efficient separation and transfer of photo-induced carriers. Our work affords a promising approach for the design of the high-efficient photocatalysts to remedy poisonous antibiotics in aqueous environment.
Show more [+] Less [-]Long-term calibration models to estimate ozone concentrations with a metal oxide sensor
2020
Sayahi, Tofigh | Garff, Alicia | Quah, Timothy | Lê, Katrina | Becnel, Thomas | Powell, Kody M. | Gaillardon, Pierre-Emmanuel | Butterfield, Anthony E. | Kelly, Kerry E.
Ozone (O₃) is a potent oxidant associated with adverse health effects. Low-cost O₃ sensors, such as metal oxide (MO) sensors, can complement regulatory O₃ measurements and enhance the spatiotemporal resolution of measurements. However, the quality of MO sensor data remains a challenge. The University of Utah has a network of low-cost air quality sensors (called AirU) that primarily measures PM₂.₅ concentrations around the Salt Lake City valley (Utah, U.S.). The AirU package also contains a low-cost MO sensor ($8) that measures oxidizing/reducing species. These MO sensors exhibited excellent laboratory response to O₃ although they exhibited some intra-sensor variability. Field performance was evaluated by placing eight AirUs at two Division of Air Quality (DAQ) monitoring stations with O₃ federal equivalence methods for one year to develop long-term multiple linear regression (MLR) and artificial neural network (ANN) calibration models to predict O₃ concentrations. Six sensors served as train/test sets. The remaining two sensors served as a holdout set to evaluate the applicability of the new calibration models in predicting O₃ concentrations for other sensors of the same type. A rigorous variable selection method was also performed by least absolute shrinkage and selection operator (LASSO), MLR and ANN models. The variable selection indicated that the AirU’s MO oxidizing species and temperature measurements and DAQ’s solar radiation measurements were the most important variables. The MLR calibration model exhibited moderate performance (R² = 0.491), and the ANN exhibited good performance (R² = 0.767) for the holdout set. We also evaluated the performance of the MLR and ANN models in predicting O₃ for five months after the calibration period and the results showed moderate correlations (R²s of 0.427 and 0.567, respectively). These low-cost MO sensors combined with a long-term ANN calibration model can complement reference measurements to understand geospatial and temporal differences in O₃ levels.
Show more [+] Less [-]Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season
2020
Mishra, A.K. | Sinha, V.
Isoprene, formaldehyde and acetaldehyde are important reactive organic compounds which strongly impact atmospheric oxidation processes and formation of tropospheric ozone. Monsoon meteorology and the topography of Himalayan foothills cause surface emissions to get rapidly transported both horizontally and vertically, thereby influencing atmospheric processes in distant regions. Further in monsoon, Indo-Gangetic Plain is a major rice growing region of the world and daytime hourly ozone can frequently exceed phytotoxic dose of 40 ppb O₃. However, the sources and ambient variability of these compounds which are potent ozone precursors are unknown. Here, we investigate the sources and photochemical processes driving their emission/formation during monsoon season from a sub-urban site at the foothills of the Himalayas. The measurements were performed in July, August and September using a high sensitivity mass spectrometer. Average ambient mixing ratios (±1σ variability) of isoprene, formaldehyde, acetaldehyde, and the sum of methyl vinyl ketone and methacrolein (MVK+MACR), were 1.4 ± 0.3 ppb, 5.7 ± 0.9 ppb, 4.5 ± 2.0 ppb, 0.75 ± 0.3 ppb, respectively, and much higher than summertime values in May. For isoprene these values were comparable to mixing ratios observed over tropical forests. Surprisingly, despite occurrence of anthropogenic emissions, biogenic emissions were found to be the major source of isoprene with peak daytime isoprene driven by temperature (r ≥ 0.8) and solar radiation. Photo-oxidation of precursor hydrocarbons were the main sources of acetaldehyde, formaldehyde and MVK+MACR. Ambient mixing ratios of all the compounds correlated poorly with acetonitrile (r ≤ 0.2), a chemical tracer for biomass burning suggesting negligible influence of biomass burning during monsoon season. Our results suggest that during monsoon season when radiation and rain are no longer limiting factors and convective activity causes surface emissions to be transported to upper atmosphere, biogenic emissions can significantly impact the remote upper atmosphere, climate and ozone affecting rice yields.
Show more [+] Less [-]Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite
2019
Degrading aquatic organic pollutants efficiently is very important but strongly relied on the design of photocatalysts. Porous graphene could increase photocatalytic performance of ZnO nanoparticles by promoting the effective charge separation of electron-hole pairs if they can be composited. Herein, porous graphene, ZnO nanoparticles and porous graphene/ZnO nanocomposite were prepared by fine tuning of partial combustion, which graphene oxide imperfectly covered by the layered Zn salt was combusted under muffle furnace within few minutes. Resulting ZnO nanoparticles (32–72 nm) are dispersed uniformly on the surface of graphene sheets, the pore sizes of porous graphene are in the range from ∼3 to ∼52 nm. The synthesized porous graphene/ZnO nanocomposite was confirmed to show enhanced efficiency under natural sunlight irradiation compared with pure ZnO nanoparticles. Using porous graphene/ZnO nanocomposite, 100% degradation of methyl orange can be achieved within 150 min. The synergetic effect of photocatalysis and adsorption is main reason for excellent MO degradation of PG/ZnO nanocomposite. This work may offer a new route to accurately prepare porous graphene-based nanocomposite and open a door of their applications.
Show more [+] Less [-]