Refine search
Results 1-10 of 54
Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport Full text
2022
Ma, Yining | Zhang, Xiangguang | Xin, Jinyuan | Zhang, Wenyu | Wang, Zifa | Liu, Quan | Wu, Fangkun | Wang, Lili | Lyu, Yilong | Wang, Qinglu | Ma, Yongjing
We quantify for the first time marine aerosol properties and their differences in the offshore and remote ocean in the mid-latitude South Asian waters, low-latitude South Asian waters, and equatorial waters of the Western Pacific Ocean, based on shipboard cruise observations conducted by the Western Pacific Ocean Scientific Observation Network in winter 2018, and further investigate the effects of long-range transport of continental aerosols on the marine environment. During the overall observation period, the average number concentration of particle matter which aerodynamic diameters<2.5 μm (PM₂.₅N) was 35.1 ± 87.4 cm⁻³ and the mass concentration (PM₂.₅M) was 12.3 ± 9.1 μg/m³. The PM₂.₅N and PM₂.₅M during the continental air mass transport period were 7.2 and 1.3 times higher than those during the non-transport period (109.2 ± 169.3 cm⁻³, 15.9 ± 14.9 μg/m³), respectively. Excluding transport period, the average PM₂.₅N and PM₂.₅M are reduced by 120% and 7%. Coarse mode particle number concentration (PM₂.₅–₁₀N) and mass concentration (PM₂.₅–₁₀M) are not significantly influenced by continental air masses (only a reduction of 7% and 2%). The variation of marine aerosol concentrations in different latitudes zones is greatly influenced by continental aerosol transport. The offshore PM₂.₅M/PM₁₀M was 30%, 21%, and 22% in the mid-latitude sea of South Asia, a low-latitude sea of South Asia, and the equatorial sea, respectively. In comparison, in the remote ocean, the distribution ratio of PM₂.₅M/PM₁₀M tended to be steady (22%–23%), and the background characteristics of marine aerosols were clearly represented. The aerosol concentration decreases with the increase of wind speed during the transport period, and the wind speed reflects the scavenging effect on aerosol. In the non-transport period, the wind speed at the sea surface promotes the generation of marine aerosols, and the impact in wind speed is strongest in the PM₂.₅–PM₅ particle size range.
Show more [+] Less [-]Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia Full text
2021
Wang, Mo. | Xu, Baiqing | Wang, Hailong | Zhang, Rudong | Yang, Yang | Gao, Shaopeng | Tang, Xiangxiang | Wang, Ninglian
Black carbon (BC), by the combustion of fossil fuels and biomass, has profound effects on climate change and glacier retreat in industrial eras. In the present study, we report refractory BC (rBC) in an ice core spanning 1850–2014, retrieved from the Hariqin Glacier of the Tanggula Mountains in the central Tibetan Plateau, measured using a single particle soot photometer (SP2). The rBC concentration shows a three-fold increase since the 1950s. The mean rBC concentration was 0.71 ± 0.52 ng mL⁻¹ during 1850s–1940s and 2.11 ± 1.60 ng mL⁻¹ during 1950s–2010s. The substantial increase in rBC since the 1950s is consistent with rBC ice core records from the Tibetan Plateau and Eastern Europe. According to the predominant atmospheric circulation patterns over the glacier and timing of changes in regional emissions, the post-1950 amplification of rBC concentration in the central Tibetan Plateau most likely reflects increases in emissions in Eastern Europe, former USSR, the Middle East, and South Asia. Despite the low-level background rBC concentrations in the ice cores from the Tibetan Plateau, the present study highlights a remarkable increase in anthropogenic BC emissions in recent decades and the consequent influence on glaciers in the Tibetan Plateau.
Show more [+] Less [-]Atmospheric pollution revealed by trace elements in recent snow from the central to the northern Tibetan Plateau Full text
2020
Li, Yuefang | Huang, Ju | Li, Zhen | Zheng, Kui
In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiaodongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFₑ values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe.
Show more [+] Less [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks Full text
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Show more [+] Less [-]Source apportionments of ambient fine particulate matter in Israeli, Jordanian, and Palestinian cities Full text
2017
Heo, Jongbae | Wu, Bo | Abdeen, Ziad | Qasrawi, Radwan | Sarnat, Jeremy A. | Sharf, Geula | Shpund, Kobby | Schauer, James J.
This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM2.5) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America.
Show more [+] Less [-]Effects of ozone on crops in north-west Pakistan Full text
2013
Ahmad, Muhammad Nauman | Büker, Patrick | Khalid, Sofia | Van Den Berg, Leon | Shah, Hamid Ullah | Wahid, Abdul | Emberson, Lisa | Power, Sally A. | Ashmore, Mike
Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops.
Show more [+] Less [-]Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh Full text
2021
Sherris, Allison R. | Begum, Bilkis A. | Baiocchi, Michael | Goswami, Doli | Hopke, Philip K. | Brooks, W Abdullah | Luby, Stephen P.
Air pollution in the form of fine particulate matter (PM₂.₅) has been linked to adverse respiratory outcomes in children. However, the magnitude of this association in South Asia and sources of PM₂.₅ that drive adverse health effects are largely unknown. This study evaluates associations between short-term variation in ambient PM₂.₅ and incidence of pneumonia and upper respiratory infections among children in Dhaka, Bangladesh. We also perform an exploratory analysis of the PM₂.₅ source composition that is most strongly associated with health endpoints. We leveraged data from health surveillance of children less than five years of age between 2005 and 2014 in Kamalapur, Bangladesh, including daily physician-confirmed diagnoses of pneumonia and upper respiratory infection. Twice-weekly source-apportioned ambient PM₂.₅ measurements were obtained for the same period, and Poisson regression adjusted for time-varying covariates was used to estimate lagged associations between ambient PM₂.₅ and respiratory infection. We use complementary matching and stratification approaches to evaluate whether these associations vary across PM₂.₅ source composition. Total PM₂.₅ mass was associated with a modest increase in incidence of pneumonia, with a peak effect size two days after exposure (rate ratio = 1.032; 95% confidence interval = 1.008–1.056). We did not identify a significant association between PM₂.₅ and upper respiratory infection. Stratified and matching analyses suggested this association was stronger among days when ambient PM₂.₅ had a higher mass percent associated with brick kiln and fugitive lead emissions.: This study suggests that elevated ambient PM₂.₅ contributes to increased incidence of child pneumonia in urban Dhaka, and that this relationship varies among days with different source composition of PM₂.₅.
Show more [+] Less [-]A comparative study of EOF and NMF analysis on downward trend of AOD over China from 2011 to 2019 Full text
2021
Ma, Qiao | Zhang, Qianqian | Wang, Qingsong | Yuan, Xueliang | Yuan, Renxiao | Luo, Congwei
In recent decades China has experienced high-level PM₂.₅ pollution and then visible air quality improvement. To understand the air quality change from the perspective of aerosol optical depth (AOD), we adopted two statistical methods of Empirical Orthogonal Functions (EOF) and Non-negative Matrix Factorization (NMF) to AOD retrieved by MODIS over China and surrounding areas. Results showed that EOF and NMF identified the important factors influencing AOD over China from different angles: natural dusts controlled the seasonal variation with contribution of 42.4%, and anthropogenic emissions have larger contribution to AOD magnitude. To better observe the interannual variation of different sources, we removed seasonal cycles from original data and conducted EOF analysis on AOD monthly anomalies. Results showed that aerosols from anthropogenic sources had the greatest contribution (27%) to AOD anomaly variation and took an obvious downward trend, and natural dust was the second largest contributor with contribution of 17%. In the areas surrounding China, the eastward aerosol transport due to prevailing westerlies in spring significantly influenced the AOD variation over West Pacific with the largest contribution of 21%, whereas the aerosol transport from BTH region in winter had relative greater impact on the AOD magnitude. After removing seasonal cycles, biomass burning in South Asia became the most important influencing factor on AOD anomalies with contribution of 10%, as its interannual variability was largely affected by El Niño. Aerosol transport from BTH was the second largest contributor with contribution of 8% and showed a decreasing trend. This study showed that the downward trend of AOD over China since 2011 was dominated by aerosols from anthropogenic sources, which in a way confirmed the effectiveness of air pollution control policies.
Show more [+] Less [-]Human exposure to halogenated and organophosphate flame retardants through informal e-waste handling activities - A critical review Full text
2021
Ma, Yulong | Stubbings, William A. | Cline-Cole, R. A. | Harrad, Stuart
Informal electrical and electronic waste (e-waste) handling activities constitute a potentially important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the environment and humans. In this review, two electronic databases (ScienceDirect and Web of Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant studies (including 72 studies selected from the two databases and 10 studies located from the references of the first 72 selected studies) were identified that reported on human external and internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting e-waste dismantling and recycling zones, especially for younger adults and children. Food intake and dust ingestion were the dominant exposure pathways for the majority of brominated flame retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date has focused on China and thus future studies should be conducted in other regions such as Africa and South Asia. Other suggested foci of future research are: examination of exposure via dermal contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence of and cause(s) of the higher body burdens of females compared with males amongst populations impacted by informal e-waste handling, and characterisation of exposure of such populations to chlorinated paraffins.
Show more [+] Less [-]Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China Full text
2020
Wang, Xun | Luo, Ji | Lin, Che-Jen | Wang, Dingyong | Yuan, Wei
Ice and sediment cores, peat bogs and tree rings are useful proxy records for reconstructing historical air pollution events. However, these indirect measurements are subject to interferences caused by environmental perturbations including global climate change. Therefore, using multiple proxy records has advantages in constraining the analytical findings. In this study, we utilized the chronological record of atmospheric deposition preserved in vegetation succession ecosystems in the deglaciated region for reconstructing historical pollution events. The rate of Cd accumulation in the forest chronosequence zone was investigated in a deglaciated area of the Tibetan Plateau. The results obtained through this novel approach are consistent with the variations of Cd concentration recorded in tree-ring, showing a 4–7 times increase of atmospheric Cd deposition from the 1890s to the early 1970s followed by a decrease from the mid-1970s–2000s. The Cd pollution record indicates that elevated atmospheric Cd release occurred in regions of Southwest China and South Asia due to the rapid industrial development until 1970 followed by coordinated efforts in controlling air emissions after mid-1970s.
Show more [+] Less [-]