Refine search
Results 1-10 of 54
Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia Full text
2021
Wang, Mo. | Xu, Baiqing | Wang, Hailong | Zhang, Rudong | Yang, Yang | Gao, Shaopeng | Tang, Xiangxiang | Wang, Ninglian
Black carbon (BC), by the combustion of fossil fuels and biomass, has profound effects on climate change and glacier retreat in industrial eras. In the present study, we report refractory BC (rBC) in an ice core spanning 1850–2014, retrieved from the Hariqin Glacier of the Tanggula Mountains in the central Tibetan Plateau, measured using a single particle soot photometer (SP2). The rBC concentration shows a three-fold increase since the 1950s. The mean rBC concentration was 0.71 ± 0.52 ng mL⁻¹ during 1850s–1940s and 2.11 ± 1.60 ng mL⁻¹ during 1950s–2010s. The substantial increase in rBC since the 1950s is consistent with rBC ice core records from the Tibetan Plateau and Eastern Europe. According to the predominant atmospheric circulation patterns over the glacier and timing of changes in regional emissions, the post-1950 amplification of rBC concentration in the central Tibetan Plateau most likely reflects increases in emissions in Eastern Europe, former USSR, the Middle East, and South Asia. Despite the low-level background rBC concentrations in the ice cores from the Tibetan Plateau, the present study highlights a remarkable increase in anthropogenic BC emissions in recent decades and the consequent influence on glaciers in the Tibetan Plateau.
Show more [+] Less [-]Human exposure to halogenated and organophosphate flame retardants through informal e-waste handling activities - A critical review Full text
2021
Ma, Yulong | Stubbings, William A. | Cline-Cole, R. A. | Harrad, Stuart
Informal electrical and electronic waste (e-waste) handling activities constitute a potentially important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the environment and humans. In this review, two electronic databases (ScienceDirect and Web of Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant studies (including 72 studies selected from the two databases and 10 studies located from the references of the first 72 selected studies) were identified that reported on human external and internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting e-waste dismantling and recycling zones, especially for younger adults and children. Food intake and dust ingestion were the dominant exposure pathways for the majority of brominated flame retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date has focused on China and thus future studies should be conducted in other regions such as Africa and South Asia. Other suggested foci of future research are: examination of exposure via dermal contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence of and cause(s) of the higher body burdens of females compared with males amongst populations impacted by informal e-waste handling, and characterisation of exposure of such populations to chlorinated paraffins.
Show more [+] Less [-]Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau Full text
2020
Wu, Guangming | Wan, Xin | Ram, Kirpa | Li, Peilin | Liu, Bin | Yin, Yongguang | Fu, Pingqing | Loewen, Mark | Gao, Shaopeng | Kang, Shichang | Kawamura, Kimitaka | Wang, Yongjie | Cong, Zhiyuan
Brown carbon (BrC) has been proposed as an important driving factor in climate change due to its light absorption properties. However, our understanding of BrC’s chemical and optical properties are inadequate, particularly at remote regions. This study conducts a comprehensive investigation of BrC aerosols in summer (Aug. 2013) and winter (Jan. 2014) at Southeast Tibetan Plateau, which is ecologically fragile and sensitive to global warming. The concentrations of methanol-soluble BrC (MeS-BrC) are approximately twice of water-soluble BrC (WS-BrC), demonstrating the environmental importance of water-insoluble BrC are previously underestimated with only WS-BrC considered. The mass absorption efficiency of WS-BrC (0.27–0.86 m² g⁻¹) is lower than those in heavily polluted South Asia, indicating a distinct contrast between the two sides of Himalayas. Fluorescence reveals that the absorption of BrC is mainly attributed to humic-like and protein-like substances, which broaden the current knowledge of BrC’s chromophores. Combining organic tracer, satellite MODIS data and air-mass backward trajectory analysis, this study finds BrC is mainly derived from bioaerosols and secondary formation in summer, while long-range transport of biomass burning emissions in winter. Our study provides new insights into the optical and chemical properties of BrC, which may have implications for environmental effect and sources of organic aerosols.
Show more [+] Less [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks Full text
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Show more [+] Less [-]Assessing the association between fine particulate matter (PM2.5) constituents and cardiovascular diseases in a mega-city of Pakistan Full text
2019
Lu, Yi | Lin, Shao | Fatmi, Zafar | Malashock, Daniel | Hussain, Mirza M. | Siddique, Azhar | Carpenter, David O. | Lin, Ziqiang | Khwaja, Haider A.
Concerning PM2.5 concentrations, rapid industrialization, along with increase in cardiovascular disease (CVD) were recorded in Pakistan, especially in urban areas. The degree to which air pollution contributes to the increase in the burden of CVD in Pakistan has not been assessed due to lack of data. This study aims to describe the characteristics of PM2.5 constituents and investigate the impact of individual PM2.5 constituent on cardiovascular morbidity in Karachi, a mega city in Pakistan. Daily levels of twenty-one constituents of PM2.5 were analyzed using samples collected at two sites from fall 2008 to summer 2009 in Karachi. Hospital admission and emergency room visits due to CVD were collected from two large hospitals. Negative Binominal Regression was used to estimate associations between pollutants and the risk of CVD. All PM2.5 constituents were assessed in single-pollutant models and selected constituents were assessed in multi-pollutant models adjusting for PM2.5 mass and gaseous pollutants. The most common CVD subtypes among our participants were ischemic heart disease, hypertension, heart failure, and cardiomyopathy. Extremely high levels of PM2.5 constituents from fossil-fuels combustion and industrial emissions were observed, with notable peaks in winter. The most consistent associations were found between exposure to nickel (5–14% increase per interquartile range) and cardiovascular hospital admissions. Suggestive evidence was also observed for associations between cardiovascular hospital admissions and Al, Fe, Ti, and nitrate. Our findings suggested that PM2.5 generated from fossil-fuels combustion and road dust resuspension were associated with the increased risk of CVD in Pakistan.
Show more [+] Less [-]Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations Full text
2019
Chutia, Lakhima | Ojha, Narendra | Girach, Imran A. | Sahu, Lokesh K. | Alvarado, Leonardo M.A. | Burrows, J. P. (John P.) | Pathak, Binita | Bhuyan, Pradip Kumar
We investigate the distribution of volatile organic compounds (VOCs) over Indian subcontinent during a winter month of January 2011 combining the regional model WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) with ground- and space-based observations and chemical reanalysis. WRF-Chem simulated VOCs are found to be comparable with ground-based observations over contrasting environments of the Indian subcontinent. WRF-Chem results reveal the elevated levels of VOCs (e. g. propane) over the Indo-Gangetic Plain (16 ppbv), followed by the Northeast region (9.1 ppbv) in comparison with other parts of the Indian subcontinent (1.3–8.2 ppbv). Higher relative abundances of propane (27–31%) and ethane (13–17%) are simulated across the Indian subcontinent. WRF-Chem simulated formaldehyde and glyoxal show the western coast, Eastern India and the Indo-Gangetic Plain as the regional hotspots, in a qualitative agreement with the MACC (Monitoring Atmospheric Composition and Climate) reanalysis and satellite-based observations. Lower values of RGF (ratio of glyoxal to formaldehyde <0.04) suggest dominant influences of the anthropogenic emissions on the distribution of VOCs over Indian subcontinent, except the northeastern region where higher RGF (∼0.06) indicates the role of biogenic emissions, in addition to anthropogenic emissions. Analysis of HCHO/NO₂ ratio shows a NOₓ-limited ozone production over India, with a NOₓ-to-VOC transition regime over central India and IGP. The study highlights a need to initiate in situ observations of VOCs over regional hotspots (Northeast, Central India, and the western coast) based on WRF-Chem results, where different satellite-based observations differ significantly.
Show more [+] Less [-]Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport Full text
2022
Ma, Yining | Zhang, Xiangguang | Xin, Jinyuan | Zhang, Wenyu | Wang, Zifa | Liu, Quan | Wu, Fangkun | Wang, Lili | Lyu, Yilong | Wang, Qinglu | Ma, Yongjing
We quantify for the first time marine aerosol properties and their differences in the offshore and remote ocean in the mid-latitude South Asian waters, low-latitude South Asian waters, and equatorial waters of the Western Pacific Ocean, based on shipboard cruise observations conducted by the Western Pacific Ocean Scientific Observation Network in winter 2018, and further investigate the effects of long-range transport of continental aerosols on the marine environment. During the overall observation period, the average number concentration of particle matter which aerodynamic diameters<2.5 μm (PM₂.₅N) was 35.1 ± 87.4 cm⁻³ and the mass concentration (PM₂.₅M) was 12.3 ± 9.1 μg/m³. The PM₂.₅N and PM₂.₅M during the continental air mass transport period were 7.2 and 1.3 times higher than those during the non-transport period (109.2 ± 169.3 cm⁻³, 15.9 ± 14.9 μg/m³), respectively. Excluding transport period, the average PM₂.₅N and PM₂.₅M are reduced by 120% and 7%. Coarse mode particle number concentration (PM₂.₅–₁₀N) and mass concentration (PM₂.₅–₁₀M) are not significantly influenced by continental air masses (only a reduction of 7% and 2%). The variation of marine aerosol concentrations in different latitudes zones is greatly influenced by continental aerosol transport. The offshore PM₂.₅M/PM₁₀M was 30%, 21%, and 22% in the mid-latitude sea of South Asia, a low-latitude sea of South Asia, and the equatorial sea, respectively. In comparison, in the remote ocean, the distribution ratio of PM₂.₅M/PM₁₀M tended to be steady (22%–23%), and the background characteristics of marine aerosols were clearly represented. The aerosol concentration decreases with the increase of wind speed during the transport period, and the wind speed reflects the scavenging effect on aerosol. In the non-transport period, the wind speed at the sea surface promotes the generation of marine aerosols, and the impact in wind speed is strongest in the PM₂.₅–PM₅ particle size range.
Show more [+] Less [-]A comparative study of EOF and NMF analysis on downward trend of AOD over China from 2011 to 2019 Full text
2021
Ma, Qiao | Zhang, Qianqian | Wang, Qingsong | Yuan, Xueliang | Yuan, Renxiao | Luo, Congwei
In recent decades China has experienced high-level PM₂.₅ pollution and then visible air quality improvement. To understand the air quality change from the perspective of aerosol optical depth (AOD), we adopted two statistical methods of Empirical Orthogonal Functions (EOF) and Non-negative Matrix Factorization (NMF) to AOD retrieved by MODIS over China and surrounding areas. Results showed that EOF and NMF identified the important factors influencing AOD over China from different angles: natural dusts controlled the seasonal variation with contribution of 42.4%, and anthropogenic emissions have larger contribution to AOD magnitude. To better observe the interannual variation of different sources, we removed seasonal cycles from original data and conducted EOF analysis on AOD monthly anomalies. Results showed that aerosols from anthropogenic sources had the greatest contribution (27%) to AOD anomaly variation and took an obvious downward trend, and natural dust was the second largest contributor with contribution of 17%. In the areas surrounding China, the eastward aerosol transport due to prevailing westerlies in spring significantly influenced the AOD variation over West Pacific with the largest contribution of 21%, whereas the aerosol transport from BTH region in winter had relative greater impact on the AOD magnitude. After removing seasonal cycles, biomass burning in South Asia became the most important influencing factor on AOD anomalies with contribution of 10%, as its interannual variability was largely affected by El Niño. Aerosol transport from BTH was the second largest contributor with contribution of 8% and showed a decreasing trend. This study showed that the downward trend of AOD over China since 2011 was dominated by aerosols from anthropogenic sources, which in a way confirmed the effectiveness of air pollution control policies.
Show more [+] Less [-]Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau Full text
2020
Huang, Jie | Kang, Shichang | Yin, Runsheng | Guo, Junming | Lepak, Ryan | Mika, Sillanpää | Tripathee, Lekhendra | Sun, Shiwei
The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ± 54 ng g−1, 2SD, n = 21) than those in the northern slopes (43 ± 26 ng g−1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (−0.53 ± 0.50‰, 2SD, n = 21) relative to those from the northern slopes (−0.12 ± 0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (−0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.
Show more [+] Less [-]Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China Full text
2020
Wang, Xun | Luo, Ji | Lin, Che-Jen | Wang, Dingyong | Yuan, Wei
Ice and sediment cores, peat bogs and tree rings are useful proxy records for reconstructing historical air pollution events. However, these indirect measurements are subject to interferences caused by environmental perturbations including global climate change. Therefore, using multiple proxy records has advantages in constraining the analytical findings. In this study, we utilized the chronological record of atmospheric deposition preserved in vegetation succession ecosystems in the deglaciated region for reconstructing historical pollution events. The rate of Cd accumulation in the forest chronosequence zone was investigated in a deglaciated area of the Tibetan Plateau. The results obtained through this novel approach are consistent with the variations of Cd concentration recorded in tree-ring, showing a 4–7 times increase of atmospheric Cd deposition from the 1890s to the early 1970s followed by a decrease from the mid-1970s–2000s. The Cd pollution record indicates that elevated atmospheric Cd release occurred in regions of Southwest China and South Asia due to the rapid industrial development until 1970 followed by coordinated efforts in controlling air emissions after mid-1970s.
Show more [+] Less [-]