Refine search
Results 1-10 of 27
Exploratory study using proton induced X-ray emission analysis and histopathological techniques to determine the toxic burden of environmental pollutants Full text
2012
The aim of this novel research was to determine the toxic burden of increased elements in water resources on the inhabitant wild animals (squirrels, turtles, bats), using particle induced x-ray emission (PIXE) and histopathological approaches. PIXE analysis of skin, muscle, lung, liver and kidney revealed significant increase in Al, Cl, Fe, Mg, Mn, Si and V. Moreover, data clearly reflect a significant (P < 0.001) deposition of toxic elements (Al, Cl, Fe and K) in the lung producing interstitial/proliferative pneumonitis, intra-alveolar hemorrhages, and thickening of alveolar capillary walls. The results obtained from the liver samples emphasized that majority of the animals were intoxicated with Cl, Mg, S, Si and V, which have produced profound deterioration and swelling of the hepatocytes. Likewise, histopathology of the kidney sections spotlighted severe nephritis and degenerative changes, which could be associated with the elevated amount of Al, Cl and Mg. This data undoubtedly provide relevant information on the heavy burden of toxic elements and their pathological outcomes in wild animals and highlight their potential risks for human exposure. Thus, the information provided is critical for developing effective strategies in dealing with health hazards associated with elemental exposures.
Show more [+] Less [-]Effect of lead on the sorption of 2,4,6-trichlorophenol on soil and peat Full text
2007
Pei, Z.G. | Shan, X.Q. | Li︠u︡, T. | Xie, Y.N. | Wen, B. | Zhang, S. | Khan, S.U.
The effect of lead on the sorption of 2,4,6-trichlorophenol (2,4,6-TCP) on soil and peat was investigated using a batch equilibration method. Lead markedly diminished the sorption of 2,4,6-TCP, and 2,4,6-TCP had little effect on lead sorption. Peat was a more effective adsorbent for 2,4,6-TCP than soil. The desorption hysteresis of 2,4,6-TCP verified the presence of high-energy sorption sites. Mechanisms of lead suppression effect on the 2,4,6-TCP sorption included the following: Firstly, lead accelerated the aggregation of colloids, the aggregates covered the surface in part and shrunk the pore sizes of the adsorbents, hence decreased the sorption of 2,4,6-TCP. Secondly, X-ray absorption and Fourier transform infrared spectroscopy study suggested that lead competed with 2,4,6-TCP for carboxylic, phenolic and Si-OH groups of organic matter and clay minerals. Such competition was partly responsible for the overall suppression effect of lead on the sorption of 2,4,6-TCP. Lead diminished the sorption of 2,4,6-trichlorophenol onto soil and peat.
Show more [+] Less [-]In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania Full text
2013
Zlatna, Romania is the site of longtime mining/smelting operations which have resulted in widespread metal pollution of the entire area. Previous studies have documented the contamination using traditional methods involving soil sample collection, digestion, and quantification via inductively coupled plasma atomic emission spectroscopy or atomic absorption. However, field portable X-ray fluorescence spectroscopy (PXRF) can accurately quantify contamination in-situ, in seconds. A PXRF spectrometer was used to scan 69 soil samples in Zlatna across multiple land use types. Each site was georeferenced with data inputted into a geographic information system for high resolution spatial interpolations. These models were laid over contemporary aerial imagery to evaluate the extent of pollution on an individual elemental basis. Pb, As, Co, Cu, and Cd exceeded governmental action limits in >50% of the sites scanned. The use of georeferenced PXRF data offers a powerful new tool for in-situ assessment of contaminated soils.
Show more [+] Less [-]Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry Full text
2010
Chou, Ju | Clement, Garret | Bursavich, Bradley | Elbers, Don | Cao, Baobao | Zhou, Weilie
The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells.
Show more [+] Less [-]Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite Full text
2010
Zhang, Zizhong | Li, Mengyan | Chen, Wei | Zhu, Shuzhen | Liu, Nannan | Zhu, Lingyan
The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Qmax) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0–10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.
Show more [+] Less [-]A limited legacy effect of copper in marine biofilms Full text
2016
McElroy, David J. | Doblin, Martina A. | Murphy, Richard J. | Hochuli, Dieter F. | Coleman, Ross A.
The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology.
Show more [+] Less [-]Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure
1999
Hsu JennHung | Lo ShangLien (Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei (Taiwan))
Influence of the composition and removal characteristics of organic matter on heavy metal distribution in compost leachates Full text
2014
He, Xiao-Song | Xi, Bei-Dou | Li, Dan | Guo, Xu-Jing | Cui, Dong-Yu | Pan, Hong-Wei | Ma, Yan
Compost leachates were collected to investigate the influence of the composition and removal of volatile fatty acids (VFAs), humic-like substances (HSs), and dissolved organic nitrogen (DON) on heavy metal distribution during the leachate treatment process. The results showed that acetic and propionic acids accounted for 81.3 to 93.84 % of VFAs, and that these acids were removed by the anaerobic-aerobic process. Humic- and fulvic-like substances were detected by excitation–emission matrix spectroscopy coupled with parallel factor analysis, and their content significantly decreased after the anaerobic and membrane treatments. DON in compost leachates ranged from 26.53 mg L⁻¹to 919.46 mg L⁻¹, comprised of dissolved free amino acids and the protein-like matter bound to humic- and fulvic-like substances, and was removed by the aerobic process. Correlation analysis showed that Mn, Ni, and Pb were bound to VFAs and protein-, fulvic-, and humic-like substances in the leachates. Co was primarily bound to fulvic- and humic-like matter and inorganic sulfurs, whereas Cu, Zn, and Cd interacted with inorganic sulfur.
Show more [+] Less [-]Interaction of erythromycin ethylsuccinate and acetaminophen with protein fraction of extracellular polymeric substances (EPS) from various bacterial aggregates Full text
2013
Métivier, Romain | Bourven, Isabelle | Labanowski, Jérome | Guibaud, Gilles
Extracellular polymeric substances (EPS) are, along with microbial cells, the main components of the biological sludges used in wastewater treatment and natural biofilms. EPS play a major role in removing pollutants from water by means of sorption. The ability of soluble EPS (S-EPS) and bound EPS (B-EPS) derived from various bacterial aggregates (flocs, granules, biofilms) to bind at pH 7.0 ± 0.1 to two pharmaceutical substances, acetaminophen (ACE) and erythromycin ethylsuccinate (ERY), has been investigated using the fluorescence quenching method. Two intense fluorescence peaks, A (Ex/Em range, 200-250/275-380 nm) and B (Ex/Em range, 260-320/275-360 nm), corresponding respectively to the aromatic protein region and soluble microbial by-product-like region, were identified in a three-dimensional excitation-emission matrix of EPS samples. The fluorescence peak, which corresponds to humic-like substances, was also identified though at low intensity. The ability of EPS to bind ACE was found to exceed that for ERY. The aromatic protein fraction of EPS displays a slightly higher affinity for drugs than that shown by the soluble microbial by-product-like fraction. The S-EPS and B-EPS present the same affinity for ACE and ERY. The effective quenching constants (log K) derived from the Stern-Volmer Equation equaled at peak A (with S-EPS): 3.7 ± 0.2 to 4.0 ± 0.1 for ACE and 2.1 ± 0.3 to 2.7 ± 0.1 for ERY. With B-EPS, these values were 3.9 ± 0.1 to 4.0 ± 0.1 for ACE and 2.0 ± 0.2 to 2.6 ± 0.1 for ERY. Our results suggest that the weaker EPS affinity for ERY than for ACE serves to partially explain why only about 50-80 % of ERY is removed from wastewater at the treatment plant. Moreover, this work demonstrates that EPS from natural river biofilms are able to bind drugs, which in turn may limit the mobility of drugs in natural waters.
Show more [+] Less [-]Investigation of uranium binding forms in selected German mineral waters Full text
2013
Osman, Alfatih A. A. | Geipel, Gerhard | Bernhard, Gert | Worch, Eckhard
Cryogenic time-resolved laser-induced fluorescence spectroscopy was successfully used to identify uranium binding forms in selected German mineral waters of extremely low uranium concentrations (<2.0 μg/L). The measurements were performed at a low temperature of 153 K. The spectroscopic data showed a prevalence of aquatic species Ca2UO2(CO3)3 in all investigated waters, while other uranyl-carbonate complexes, viz, UO2CO3(aq) and UO2(CO3)2 (2-), only existed as minor species. The pH value, alkalinity (CO3 (2-)), and the main water inorganic constituents, specifically the Ca(2+) concentration, showed a clear influence on uranium speciation. Speciation modeling was performed using the most recent thermodynamic data for aqueous complexes of uranium. The modeling results for the main uranium binding form in the investigated waters indicated a good agreement with the spectroscopy measurements.
Show more [+] Less [-]