Refine search
Results 1-10 of 217
Quality water not everywhere: Exploratory Analysis of Water Quality Across Ebocha-Obrikom Oil and Gas Flaring Area in the Core Niger Delta Region of Nigeria. Full text
2022
Raimi, Morufu | Sawyerr, Henry | Ezekwe, Clinton | Opasola, Afolabi
Objectives:To compare water quality parameters in the vicinity of Gas Flaring Area of Ebocha-Obrikom of Rivers State with that of the recommended standards.Methods:The research utilized standard analytical procedures. All sampling, conservation, transportation and analysis followed standard procedures described in APHA (2012). All the samples collected were transported to the laboratory through keeping in an icebox to prevent degradation of the organic substances.Results:Result depicts that Turbidity, DO, BOD, COD, TSS, Magnesium, Iron, Cadmium, Lead, Chromium, and Nickel exceeded the desirable limit meant for drinking purpose as well as could potentially pose threats toward human society. Hence, remain unsuitable for drinking, as the inhabitants were more vulnerable for their total lifetime period of exposure through continuous consumption of unsuitable drinking water.Conclusion:It is recommended that the local government environmental health officers and other regulatory agencies frequently monitor the levels of these pollutants within the area and also ensure strict adherence to guidelines to ensure a healthy environment. As exposure to the above stated parameters can have a remarkable impact on human health living in the vicinity of the gas flaring area by drinking water around the study area; thus, groundwater needs to treated before using for household purpose or drinking. Thus, this study would help in decision making for stakeholders and relevant authorities in the execution of reasonable groundwater management strategies and remediation plans in the area to protect public and environmental health.
Show more [+] Less [-]Estimating NOx removal capacity of urban trees using stable isotope method: A case study of Beijing, China Full text
2021
Gong, Cheng | Xian, Chaofan | Cui, Bowen | He, Guojin | Wei, Mingyue | Zhang, Zhaoming | Ouyang, Z. (Zhiyun)
It is widely recognized that green infrastructures in urban ecosystems provides important ecosystem services, including air purification. The potential absorption of nitrogen oxides (NOₓ) by urban trees has not been fully quantified, although it is important for air pollution mitigation and the well-being of urban residents. In this study, four common tree species (Sophora japonica L., Fraxinus chinensis Roxb., Populus tomentosa Carrière, Sabina chinensis (L.)) in Beijing, China, were studied. The dual stable isotopes (¹⁵N and ¹⁸O) and a Bayesian isotope mixing model were applied to estimate the sources contributions of potential nitrogen sources to the roadside trees based on leaf and soil sampling in urban regions. The following order of sources contributions was determined: soil > dry deposition > traffic-related NOₓ. The capacity of urban trees for NOₓ removal in the city was estimated using a remote sensing and GIS approach, and the removal capacity was found to range from 0.79 to 1.11 g m⁻² a⁻¹ across administrative regions, indicating that 1304 tons of NOₓ could be potentially removed by urban trees in 2019. Our finding qualified the potential NOₓ removal by urban trees in terms of atmospheric pollution mitigation, highlighting the role of green infrastructure in air purification, which should be taken into account by stakeholders to manage green infrastructure as the basis of a nature-based approach.
Show more [+] Less [-]Sustainable remediation through the risk management perspective and stakeholder involvement: A systematic and bibliometric view of the literature Full text
2019
Braun, Adeli Beatriz | Trentin, Adan William da Silva | Visentin, Caroline | Thomé, Antônio
Sustainable remediation is a new way of thinking and acting in the management of contaminated sites. This research aims to identify and structure the state-of-the-art of sustainable remediation from the risk management and stakeholder involvement perspective. A systematic and bibliometric study of scientific production was performed on scientific papers indexed in the Scopus and Web of Science databases with the objectives: 1) to select a bibliographic portfolio that is aligned with the perception of the researchers in regard to theme, 2) to perform a bibliometric analysis of the selected bibliographic portfolio, and 3) to conduct a thematic synthesis and identify the integration of sustainable remediation from the risk management and stakeholder involvement perspective. The results indicated that although sustainable remediation is a recent theme it presents a promising field for development worldwide, verified by the growing number of publications in recent years. A change is observed in the way risk management is considered with the rise of sustainable remediation, demonstrated by different approaches in publications. Likewise, the involvement of stakeholders is widely discussed, and the importance of their participation in decision-making processes in the field of sustainable remediation is identified. This research brings several and new contributions as it provides with a detailed overview and guidance about the main characteristics and peculiarities as well as what already exists, the form to approach, the advances and what still needs to be improved so that the perception of stakeholders and risk management are better understood within the context of sustainable remediation.
Show more [+] Less [-]New insight of ozone pollution impact from flare emissions of chemical plant start-up operations Full text
2019
Ge, Sijie | Zhang, Jian | Wang, Sujing | Xu, Qiang | Ho, Thomas
Flaring is a common and necessary operation for chemical industries, which is designed to manage dangerous process overpressure scenarios or to release and destroy off-spec products during chemical plant upsets or turnarounds. However, excessive flaring can emit large quantities of VOCs and NOx into the atmosphere, which will cause transient and localized ozone pollution events in the presence of sunlight. The objective of this study was to quantify the impact to regional air-quality due to flare emissions from chemical plant start-up operations through the coupling of dynamic process simulations via Aspen Plus and air-quality simulations via CAMx. Simulation results from case studies have indicated that the corresponding ozone increments can vary significantly from 0.2 ppb to 17.8 ppb under different temporal and spatial factors, including the start-up starting hour, starting day, and plant location. Additional ozone sensitivity simulations have also indicated that the corresponding ozone increments are higher when the plant is located in a VOC-limited area than that in a NOx-limited area. The results from this study have delivered a cost-effective air-quality control practice for plant start-ups with a minimum air-quality impact through selecting the optimal starting time within the allowable ranges. The practice has significant potential to benefit all stakeholders, including environmental agencies, chemical industries, and local communities.
Show more [+] Less [-]Systematic identification and prioritization of communities impacted by residential woodsmoke in British Columbia, Canada Full text
2017
Hong, Kris Y. | Weichenthal, Scott | Saraswat, Arvind | King, Gavin H. | Henderson, Sarah B. | Bräuer, Michael
Residential woodsmoke is an under-regulated source of fine particulate matter (PM2.5), often surpassing mobile and industrial emissions in rural communities in North America and elsewhere. In the province of British Columbia (BC), Canada, many municipalities are hesitant to adopt stricter regulations for residential wood burning without empirical evidence that smoke is affecting local air quality. The objective of this study was to develop a retrospective algorithm that uses 1-h PM2.5 concentrations and daily temperature data to identify smoky days in order to prioritise communities by smoke impacts. Levoglucosan measurements from one of the smokiest communities were used to establish the most informative values for three algorithmic parameters: the daily standard deviation of 1-h PM2.5 measurements; the daily mean temperature; and the daytime-to-nighttime ratio of PM2.5 concentrations. Alternate parameterizations were tested in 45 sensitivity analyses. Using the most informative parameter values on the most recent two years of data for each community, the number of smoky days ranged from 5 to 277. Heat maps visualizing seasonal and diurnal variation in PM2.5 concentrations showed clear differences between the higher- and lower-ranked communities. Some communities were sensitive to one or more of the parameters, but the overall rankings were consistent across the 45 analyses. This information will allow stakeholder agencies to work with local governments on implementing appropriate intervention strategies for the most smoke-impacted communities.
Show more [+] Less [-]Integrating Bayesian Belief Networks in a toolbox for decision support on plastic clean-up technologies in rivers and estuaries Full text
2022
Leone, Giulia | Catarino, Ana I. | Pauwels, Ine | Mani, Thomas | Tishler, Michelle | Egger, Matthias | Forio, Marie Anne Eurie | Goethals, Peter L.M. | Everaert, Gert
Current mitigation strategies to offset marine plastic pollution, a global concern, typically rely on preventing floating debris from reaching coastal ecosystems. Specifically, clean-up technologies are designed to collect plastics by removing debris from the aquatic environment such as rivers and estuaries. However, to date, there is little published data on their potential impact on riverine and estuarine organisms and ecosystems. Multiple parameters might play a role in the chances of biota and organic debris being unintentionally caught within a mechanical clean-up system, but their exact contribution to a potential impact is unknown. Here, we identified four clusters of parameters that can potentially determine the bycatch: (i) the environmental conditions in which the clean-up system is deployed, (ii) the traits of the biota the system interacts with, (iii) the traits of plastic items present in the system, and, (iv) the design and operation of the clean-up mechanism itself. To efficiently quantify and assess the influence of each of the clusters on bycatch, we suggest the use of transparent and objective tools. In particular, we discuss the use of Bayesian Belief Networks (BBNs) as a promising probabilistic modelling method for an evidence-based trade-off between removal efficiency and bycatch. We argue that BBN probabilistic models are a valuable tool to assist stakeholders, prior to the deployment of any clean-up technology, in selecting the best-suited mechanism to collect floating plastic debris while managing potential adverse effects on the ecosystem.
Show more [+] Less [-]Plastisphere in freshwaters: An emerging concern Full text
2021
Barros, Juliana | Seena, Sahadevan
Plastisphere, an ecosystem of microbes thriving on floating plastic debris, has been extensively studied in marine waters since 2013. Currently, very little is known about the freshwater plastisphere. This review seeks to provide a broad insight into the freshwater science of plastisphere in the light of marine plastisphere, including research gaps, suggestions, and rising concerns, which would be of interest to the public, policymakers, and stakeholders. Given that freshwaters are endangered ecosystems, it is imperative to understand the role and impact of plastisphere on freshwaters. Plastic debris, especially microplastics (size <5 mm) in freshwater ecosystems, provide a stable, persistent, and buoyant substrate for microbes. Although current evidence suggests that freshwater environmental conditions and microplastics' physical and chemical properties significantly influence microbial colonisation, its role and integration in the aquatic ecosystems are unknown. Considering that the plastisphere biodiversity is unique, we seek to establish why and how many species co-exist in the plastisphere. Evaluating such fundamental questions should advance our basic understanding of the resilience of plastisphere to the changing environment. Plastisphere microbes, including the pathogenic bacteria, were found in both systems demonstrating their ability to survive on the plastic fragments from one ecosystem to another. A significant concern regarding plastisphere is the potential freshwater dispersal of anthropogenic pollutants and invasive or pathogenic species. Notably, microplastics aggregates may serve as a food source for grazers, which opens the question of the extent to which it can impact freshwater food webs. To gain a thorough understanding of the interplay between microplastics and the biogeochemical cycle, further insight into plastisphere microbes’ functional role is needed. This would shed light on the unconsidered freshwater elemental cycling pathways. Given the complexity and universal nature of the plastisphere, strong interdisciplinary global research initiatives or networks are required to address the emerging concerns of plastisphere in freshwaters.
Show more [+] Less [-]A combined emission and receptor-based approach to modelling environmental noise in urban environments Full text
2018
Oiamo, Tor H. | Davies, Hugh | Rainham, Daniel | Rinner, Claus | Drew, Kelly | Sabaliauskas, Kelly | Macfarlane, Ronald
The state of practice for noise assessment utilizes established standards for emission and propagation modelling of linear and point sources. Recently, land use regression (LUR) modelling has emerged as an alternative method due to relatively low data and computing resource demands. However, a limitation of LUR modelling is that is does not account for noise attenuation and reflections by features of the built environment. This study demonstrates and validates a method that combines the two modelling frameworks to exploit their respective strengths: Emission and propagation based prediction of traffic noise, the predominant source of noise at the level of streetscapes, and a LUR-based correction for noise sources that vary on spatial scales beyond the streetscape.Multi-criteria analysis, location-allocation modelling and stakeholder consultation identified 220 monitoring sites with optimal coverage for a 1-week sampling period. A subset of sites was used to validate a road traffic noise emission and propagation model and to specify a LUR model that predicted the contribution of other sources. The equivalent 24-h sound pressure level (LAeq) for all sites was 62.9 dBA (SD 6.4). This varied by time of day, weekday, types of roads and land uses. The traffic noise emission model demonstrated a high level of covariance with observed noise levels, with R² values of 0.58, 0.60 and 0.59 for daytime, nighttime and 24-h periods, respectively. Combined with LUR models to correct for other noise sources, the hybrid models R² values were 0.64, 0.71 and 0.67 for the respective time periods.The study showed that road traffic noise emissions account for most of the variability of total environmental noise in Toronto. The combined approach to predict fine resolution noise exposures with emission and receptor-based models presents an effective alternative to noise modelling approaches based on emission and propagation or LUR modelling.
Show more [+] Less [-]Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA Full text
2016
Nhu, Trang T. | Schaubroeck, Thomas | Henriksson, Patrik J.G. | Bosma, Roel | Sorgeloos, Patrick | Dewulf, Jo
Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA Full text
2016
Nhu, Trang T. | Schaubroeck, Thomas | Henriksson, Patrik J.G. | Bosma, Roel | Sorgeloos, Patrick | Dewulf, Jo
Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility.
Show more [+] Less [-]Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA Full text
2016
Nhu, T.T. | Schaubroeck, T. | Henriksson, P.J.G. | Bosma, R. | Sorgeloos, P. | Dewulf, J.
Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported Life Cycle Assessment (LCA). We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories.
Show more [+] Less [-]Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review Full text
2016
Zhong, Jian | Cai, Xiao-Ming | Bloss, William James
Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies.
Show more [+] Less [-]