Refine search
Results 1-10 of 159
Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China
2020
Hu, Yongxia | Sun, Yuxin | Pei, Nancai | Zhang, Zaiwang | Li, Huawei | Wang, Weiwei | Xie, Jinli | Xu, Xiangrong | Luo, Xiaojun | Mai, Bixian
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g⁻¹ dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kₒw, and between log TFᵣ₋ₛ (from root to stem) and log Kₒw were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFₛ₋ₗ (from stem to leaf) and log Kₒw were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
Show more [+] Less [-]Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil
2020
Xu, Congbin | Zhao, Jiwei | Yang, Wenjie | He, Li | Wei, Wenxia | Tan, Xiao | Wang, Jun | Lin, Aijun
Biochar has a wide range of feedstocks, and different feedstocks often resulted in different properties, such as element distribution and heavy metal immobilization performance. In this work, batch experiments were conducted to assess the effectiveness of biochar pyrolyzed from kitchen waste (KWB), corn straw (CSB), and peanut hulls (PHB) on immobilization of Cd and Pb in contaminated soil by planting swamp cabbage (Ipomoea aquatica Forsk.) with a combination of toxicological and physiological tests. The results showed that biochar could all enhance the soil pH, and reduce extractable Pb and Cd in soil by 22.61%–71.01% (KWB), 18.54%–64.35% (CSB), and 3.28%–60.25% (PHB), respectively. The biochar led to a drop in Cd and Pb accumulation in roots, stems, and leaves by 45.43%–97.68%, 59.13%–96.64%, and 63.90%–99.28% at the dosage of 60.00 mg/kg, respectively. The root length and fresh weight of swamp cabbage were promoted, while superoxide dismutase (SOD) and peroxidase (POD) decreased after biochar treatment. The distribution of heavy metal fractions before and after biochar treatment indicated that biochar could transform Cd and Pb into a state of lower bioavailability, thus inhibiting Cd and Pb uptake by swamp cabbage. Biochar with different feedstocks could be ranked by the following order according to immobilization performance: KWB > CSB > PHB.
Show more [+] Less [-]Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus
2019
Pidlisnyuk, Valentina | Erickson, Larry | Stefanovska, Tatyana | Popelka, Jan | Hettiarachchi, Ganga | Davis, Lawrence | Trögl, Josef
This study aims to summarize results on potential phytomanagement of two metal(loid)-polluted military soils using Miscanthus x giganteus. Such an option was tested during 2-year pot experiments with soils taken from former military sites in Sliač, Slovakia and Kamenetz-Podilsky, Ukraine. The following elements were considered: As, Cu, Fe, Mn, Pb, Sr, Ti, Zn and Zr. M. x giganteus showed good growth at both military soils with slightly higher maximum shoot lengths in the second year of vegetation. Based on Principal Component Analysis similarities of metal(loid) uptake by roots, stems and leaves were summarized. Major part of the elements remained in M. x giganteus roots and rather limited amounts moved to the aerial parts. Levels taken up decreased in the second vegetation year. Dynamics of foliar metal(loid) concentrations divided the elements in two groups: essential elements required for metabolism (Fe, Mn, Cu, and Zn) and non-essential elements without any known metabolic need (As, Sr, Ti, and Zr). Fe, Mn, Ti and Sr showed similar S-shaped uptake curve in terms of foliar concentrations (likely due to dilution in growing biomass), while Cu exhibited a clear peak mid-season. Behavior of Zn was in between. Foliar Zr and As concentrations were below detection limit. The results illustrated a good potential of M. x giganteus for safely growing on metal-polluted soils taken from both military localities.
Show more [+] Less [-]Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Show more [+] Less [-]Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants
2019
Song, Chun | Ye, Fang | Zhang, Huiling | Hong, Jie | Hua, Chenyu | Wang, Bin | Chen, Yanshan | Ji, Rong | Zhao, Lijuan
Agricultural soil is one of the main sink for both heavy metals and nanomaterials (NMs). Whether NMs can impact heavy metals uptake or bioaccumulation in plants is unknown. Here, cucumber plants were cultivated in a multi-heavy metals contaminated soil amended with four types of NMs (SiO2, TiO2, ZnS and MoS2) separately for four weeks. Physiological and biochemical parameters were determined to investigate the impact of NMs on plant growth. Inductively coupled plasma mass spectrometry was employed to determine the metal content in plants. Results showed that none of the tested NMs impacted plants biomass, but all the NMs showed different degrees of reduction in heavy metals bioaccumulation in plant roots, stems and leaves. However, four NMs showed different degrees of reduction in macro and micro nutrients uptake. MoS2 decreased the bioaccumulation of heavy metals (As, Cd, Cr, Cu, Ni, Al, Ti and Pb) for 36.4–60.6% and nutrients (Mg, Fe, K, Si and Mn) for 40.1%–50.1% in roots. Exposure to MoS2 NMs also significantly increased 23.4% of Si in leaves, 205.6% and 83.9% of Mo in roots and stems, respectively. In general, the results of this study showed promising potential for NMs to reduce uptake of heavy metals in crop plants, especially MoS2 NMs. However, the negative impacts of perturbing nutrients uptake should be paid attention as well.
Show more [+] Less [-]Long-term interactive effects of N addition with P and K availability on N status of Sphagnum
2018
Chiwa, Masaaki | Sheppard, Lucy J. | Leith, Ian D. | Leeson, Sarah R. | Tang, Y Sim | Neil Cape, J.
Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, where ambient deposition was 8 kg N ha−1 yr−1, 56 kg N ha−1 yr−1 of either ammonium (NH4+, Nred) or nitrate (NO3−, Nox) with and without P and K, were added over 11 years. Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 years) and high doses (56 kg N ha−1 yr−1) of reduced N was not completely ameliorated by P and K addition; N concentrations in Sphagnum capitula for Nred 56 PK were comparable with those for Nred 56, although N concentrations in Sphagnum stems for Nred 56 PK were lower than those for Nred 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for Nred 56 PK were not different from Nred 56, they were lower for Nox 56 PK than for Nox 56 whose stage of N saturation had not advanced compared to Nred 56. These results indicate that increasing P and K availability has only a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of N saturation. This study concluded that over the long-term P and K additions will not offset the N saturation of Sphagnum.
Show more [+] Less [-]Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants
2017
Ge, Jing | Cui, Kai | Yan, Huangqian | Li, Yong | Chai, Yangyang | Liu, Xianjin | Cheng, Jiangfeng | Yu, Xiangyang
Uptake and translocation of imidacloprid (IMI), thiamethoxam (THX) and difenoconazole (DFZ) in rice plants (Oryza sativa L.) were investigated with a soil-treated experiment at two application rates: field rate (FR) and 10*FR under laboratory conditions. The dissipation of the three compounds in soil followed the first-order kinetics and DFZ showed greater half-lives than IMI and THX. Detection of the three compounds in rice tissues indicated that rice plants could take up and accumulate these pesticides. The concentrations of IMI and THX detected in leaves (IMI, 10.0 and 410 mg/kg dw; THX, 23.0 and 265 mg/kg dw) were much greater than those in roots (IMI, 1.37 and 69.3 mg/kg dw; THX, 3.19 and 30.6 mg/kg dw), which differed from DFZ. The DFZ concentrations in roots (15.6 and 79.1 mg/kg dw) were much greater than those in leaves (0.23 and 3.4 mg/kg dw). The bioconcentration factor (BCF), representing the capability of rice to accumulate contaminants from soil into plant tissues, ranged from 1.9 to 224.3 for IMI, from 2.0 to 72.3 for THX, and from 0.4 to 3.2 for DFZ at different treated concentrations. Much higher BCFs were found for IMI and THX at 10*FR treatment than those at FR treatment, however, the BCFs of DFZ at both treatments were similar. The translocation factors (TFs), evaluating the capability of rice to translocate contaminants from the roots to the aboveground parts, ranged from 0.02 to 0.2 for stems and from 0.02 to 9.0 for leaves. The tested compounds were poorly translocated from roots to stems, with a TF below 1. However, IMI and THX were well translocated from roots to leaves. Clothianidin (CLO), the main metabolite of THX, was detected at the concentrations from 0.02 to 0.5 mg kg−1 in soil and from 0.07 to 7.0 mg kg−1 in plants. Concentrations of CLO in leaves were almost 14 times greater than those in roots at 10*FR treatment.
Show more [+] Less [-]Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments
2017
Lin, Lina | Gao, Minling | Qiu, Weiwen | Wang, Di | Huang, Qing | Song, Zhengguo
The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC1 and FMBC2) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P < 0.05), and FMBC2 performed better than FMBC1 did. Furthermore, exposure to 2% FMBC2 decreased the total As concentration in the grain by 68.9–78.3%. The addition of FMBC increased the ratio of essential amino acids in the grain, decreased As availability in the soil, and significantly increased the Fe and Mn plaque contents. The reduced As accumulation in rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil.
Show more [+] Less [-]Accumulation of atmospheric deposition of As, Cd and Pb by bush bean plants
2015
De Temmerman, L. | Waegeneers, N. | Ruttens, A. | Vandermeiren, K.
Bush bean (Phaseolus vulgaris) was exposed to atmospheric deposition of As, Cd and Pb in a polluted and a reference area. The atmospheric deposition of these elements was significantly related to the concentrations in leaves, stems and pods at green harvest. Surprisingly there was also a clear relation for As and Pb in the seeds at dry harvest, even though these seeds were covered by the husks. Root uptake of accumulated atmospheric deposits was not likely in such a short term experiment, as confirmed by the fact that soil pore water analysis did not reveal significant differences in trace element concentrations in the different exposure areas. For biomonitoring purposes, the leaves of bush bean are the most suitable, but also washed or unwashed pods can be used. This means that the obtained relationships are suitable to estimate the transfer of airborne trace elements in the food chain via bush bean.
Show more [+] Less [-]Contrasting carbon allocation responses of juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies) to competition and ozone
2015
Ritter, Wilma | Lehmeier, Christoph Andreas | Winkler, Jana Barbro | Matyssek, Rainer | Edgar Grams, Thorsten Erhard
Allocation of recent photoassimilates of juvenile beech and spruce in response to twice-ambient ozone (2 × O3) and plant competition (i.e. intra vs. inter-specific) was examined in a phytotron study. To this end, we employed continuous 13CO2/12CO2 labeling during late summer and pursued tracer kinetics in CO2 released from stems. In beech, allocation of recent photoassimilates to stems was significantly lowered under 2 × O3 and increased in spruce when grown in mixed culture. As total tree biomass was not yet affected by the treatments, C allocation reflected incipient tree responses providing the mechanistic basis for biomass partitioning as observed in longer experiments. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demand. Respiration of spruce appeared to be exclusively supplied by recent photoassimilates. In beech, older C, putatively located in stem parenchyma cells, was a major source of respiratory substrate, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce.
Show more [+] Less [-]