Refine search
Results 1-10 of 41
Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method
2022
Zhu, Yuling | Sheng, Yating | Liu, Yuxin | Chen, Jiemin | He, Xiaoyun | Wang, Wenzhong | Hu, Baowei
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO₂. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe–U bacteria, can co-precipitate U and Fe to form stable Fe–U solids. Column experiments running for 4 months demonstrated the production of U(IV)–O–Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe–U bacteria. The reoxidation experiments revealed the U(IV)–O–Fe(II) precipitates were more stable than UO₂. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO₄ chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Show more [+] Less [-]Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field
2022
Ma, Qingyun | Tan, Hao | Song, Jinlong | Li, Miaomiao | Wang, Zhiye | Parales, Rebecca E. | Li, Lin | Ruan, Zhiyong
This study aims to investigate the effects of long-term nicosulfuron residue on an herbicide factory ecosystem. High-throughput sequencing was used to investigate the environmental microbial community structure and interactions. The results showed that the main contributor to the differences in the microbial community structure was the sample type, followed by oxygen content, pH and nicosulfuron residue concentration. Regardless of the presence or absence of nicosulfuron, soil, sludge, and sewage were dominated by groups of Bacteroidetes, Actinobacteria, and Proteobacteria. Long-term exposure to nicosulfuron increased alpha diversity of bacteria and archaea but significantly decreased the abundance of Bacteroidetes and Acidobateria compared to soils without nicosulfuron residue. A total of 81 possible nicosulfuron-degrading bacterial genera, e.g., Rhodococcus, Chryseobacterium, Thermomonas, Stenotrophomonas, and Bacillus, were isolated from the nicosulfuron factory environmental samples through culturomics. The co-occurrence network analysis indicated that the keystone taxa were Rhodococcus, Stenotrophomonas, Nitrospira, Terrimonas, and Nitrosomonadaceae_MND1. The strong ecological relationship between microorganisms with the same network module was related to anaerobic respiration, the carbon and nitrogen cycle, and the degradation of environmental contaminants. Synthetic community (SynCom), which provides an effective top-down approach for the critical degradation strains obtained, enhanced the degradation efficiency of nicosulfuron. The results indicated that Rhodococcus sp. was the key genus in the environment of long-term nicosulfuron exposure.
Show more [+] Less [-]Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process
2020
Cai, Mengyu | Qian, Yingying | Chen, Nan | Ling, Tiejun | Wang, Jingjing | Jiang, Hong | Wang, Xu | Qi, Kezong | Zhou, Yu
Mycotoxins are high toxic, widely distributed contaminants in foodstuff. In this study, a aflatoxin B1 (AFB1) degrading strain S. acidoaminiphila CW117 was screened, and its detoxification characteristics were investigated. Substrate AFB1 at 45 μg/L was degraded by CW117 within 24 h; meanwhile, 4.1 mg/L AFB1 was almost degraded within 48 h. After 24 h degradation, the biotoxicity of the detoxified culture was eliminated. Strain CW117 efficient degradation to AFB1 (especially to low AFB1 concentrations) suggested its potential significance to detoxification development on food and feedstuff. The active degradation components present in the cell-free supernatant. The degradation ratio increased constantly with increasing incubation temperature raised (0–90 °C) and was even stable at 90 °C. Degradation was optimal at pH 6–7, and was only partially inhibited by metal-chelators (EDTA and EGTA), proteinase K, and a protein denaturant (sodium dodecyl sulfate, SDS). The recombinant laccase rLC1 (0.5 mg/mL) from CW117 degraded 29.3% of AFB1 within 24 h; however, the cell-free supernatant degraded 76.7% of the toxin in same time, with much lower protein content. The results indicated the CW117 degrades AFB1 via a combination of enzymes and micro-molecule oxides.
Show more [+] Less [-]Characterization and transcriptomic analysis of a highly Cr(VI)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T
2020
Gao, Jie | Wu, Shimin | Liu, Ying | Wu, Shanghua | Jiang, Cancan | Li, Xianglong | Wang, Rui | Bai, Zhihui | Zhuang, Guoqiang | Zhuang, Xuliang
Previous research has shown that Stenotrophomonas has the ability to reduce Cr(VI). In this study, we determined whether the reduction capacity of Cr(VI) is conserved in Stenotrophomonas rhizophila DSM14405ᵀ, a plant-growth-promoting rhizobacterium (PGPR). Our results show that S. rhizophila DSM14405ᵀ displays high Cr(VI) resistance at a minimal inhibitory concentration of 1000 mg/L. Furthermore, it completely reduced 50 mg/L Cr(VI) in 28 h at pH 7.5 at 30 °C. The results of X-ray photoelectron spectroscopy and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry analysis confirmed the ability of S. rhizophila DSM14405ᵀ to convert Cr(VI) to Cr(III), and indicated the adsorption and intracellular accumulation of Cr(III). Transcriptomic analysis revealed that in the presence or absence of Cr(VI), transcriptomes upon short-term exposure showed more differentially expressed genes than those after long-term exposure. GO and KEGG analyses showed that most of the differentially expressed genes were related to Cr(VI) resistance, including genes related to iron homeostasis, central metabolism, DNA repair and anti-oxidative stress, and sulfur metabolism. Highly Cr(VI)-resistant and reductive abilities of this PGPR strain render it a suitable candidate for combined plant-microbe remediation of chromium contaminants from soil.
Show more [+] Less [-]Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida
2019
Ju, Hui | Zhu, Dong | Qiao, Min
Microplastics (MPs) are an emerging contaminant and are confirmed to be ubiquitous in the environment. Adverse effects of MPs on aquatic organisms have been widely studied, whereas little research has focused on soil invertebrates. We exposed the soil springtail Folsomia candida to artificial soils contaminated with polyethylene MPs (<500 μm) for 28 d to explore the effects of MPs on avoidance, reproduction, and gut microbiota. Springtails exhibited avoidance behaviors at 0.5% and 1% MPs (w/w in dry soil), and the avoidance rate was 59% and 69%, respectively. Reproduction was inhibited when the concentration of MPs reached 0.1% and was reduced by 70.2% at the highest concentration of 1% MPs compared to control. The half-maximal effective concentration (EC₅₀) value based on reproduction for F. candida was 0.29% MPs. At concentrations of 0.5% dry weight in the soil, MPs significantly altered the microbial community and decreased bacterial diversity in the springtail gut. Specifically, the relative abundance of Wolbachia significantly decreased while the relative abundance of Bradyrhizobiaceae, Ensifer and Stenotrophomonas significantly increased. Our results demonstrated that MPs exerted a significant toxic effect on springtails and can change their gut microbial community. This can provide useful information for risk assessment of MPs in terrestrial ecosystems.
Show more [+] Less [-]The pollution level of the blaOXA-58 carbapenemase gene in coastal water and its host bacteria characteristics
2019
Xin, Rui | Zhang, Kai | Wu, Nan | Zhang, Ying | Niu, Zhiguang
This paper investigated 10 carbapenemase genes and selected the hosts of these genes in the estuary of Bohai Bay. The results showed that the OXA-58 producer accounted for a large percentage of carbapenem resistant bacteria in the sampling points, whereas the VIM, KPC, NDM, IMP, GES, OXA-23, OXA-24, OXA-48 and OXA-51 producers were not detected in the study. In addition, 9 bacterial genera with 100% identical blaOXA₋₅₈ sequences, including Pseudomonas, Rheinheimera, Stenotrophomonas, Shewanella, Raoultella, Vibrio, Pseudoalteromonas, Algoriphagus, Bowmanella and Thalassospira, were isolated from seawater. It is suggested that the host of blaOXA₋₅₈ gene were varied and many kinds of them could survive in the seawater. Moreover, we preformed the quantitative RT-PCR and the result shown the abundance of blaOXA₋₅₈ fluctuated between 2.8×10⁻⁶ copies/16S and 2.46×10⁻⁴ copies/16S, which was of the same order of magnitude as some common antibiotic resistance genes in environment. Furthermore, the variation trend of blaOXA₋₅₈ gene suggested that pollution discharge and horizontal gene transfer could contribute to the increase of the gene in coastal area.
Show more [+] Less [-]Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach
2016
Eevers, N. | Hawthorne, J.R. | White, J.C. | Vangronsveld, J. | Weyens, N.
2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes.
Show more [+] Less [-]Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish
2021
Zhao, Yao | Qin, Zhen | Huang, Zhuizui | Bao, Zhiwei | Luo, Ting | Jin, Yuanxiang
Various microplastics (MPs) are found in the environment and organisms. MP residues in organisms can affect health; however, their impacts on metabolism in aquatic organisms remain unclear. In this study, zebrafish embryos were exposed to polyethylene MPs with sizes ranging from 1 to 4 μm at concentrations of 0, 10, 100, and 1000 μg/L for 7 days. Through qPCR technology, the results indicated that zebrafish exposed to polyethylene MPs exhibited significant change in microbes of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, etc. Moreover, 16S RNA gene sequencing revealed that there was a significant difference in alpha diversity between the control and 1000 μg/L MP-treated groups. At the genus level, the abundance of Aeromonas, Shewanella, Microbacterium, Nevskia and Methyloversatilis have increased remarkably. Conversely, the abundance of Pseudomonas, Ralstonia and Stenotrophomonas were significant reduction after MPs exposure. In addition, the levels of TG (triglyceride), TCHO (total cholesterol), NEFA (nonesterified fatty acid), TBA (total bile acid), GLU (glucose) and pyruvic acid significantly changed in MP-treated larval zebrafish, indicating that their metabolism was disturbed by MPs. Transcriptional levels of glucose and lipid metabolism-related genes showed a decreasing trend. Furthermore, LC/MS-based nontargeted metabolomics analysis demonstrated that a total of 59 phospholipid-related substances exhibited significant changes in larval fish treated with 1000 μg/L MPs. The mRNA levels of phospholipid metabolism-related genes were also obviously changed. Pearson correlation analysis indicated that the abundance of Aeromonas, Shewanella and Chitinibacter bacteria showed a negative correlation with most phospholipids, while Nevskia, Parvibacter and Lysobacter showed a positive correlation with most phospholipids. Based on these results, it is suggested that 1–4 μm PE-MPs could impact the microbiome and metabolism of larval zebrafish. All of these results indicated that the health risk of MPs cannot be ignored.
Show more [+] Less [-]Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model
2020
He, Jianwen | Zheng, Weijiang | Tao, Chengyuan | Guo, Huiduo | Xue, Yongqiang | Zhao, Ruqian | Yao, Wen
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring’s intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Show more [+] Less [-]Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis
2018
Fang, Hua | Zhang, Houpu | Han, Lingxi | Mei, Jiajia | Ge, Qiqing | Long, Zhengnan | Yu, Yunlong
Activated sludge (AS) has been regarded as the main driver in the removal of organic pollutants such as pesticides due to a high diversity and abundance of microorganisms. However, little is known about the biodegradation genes (BDGs) and pesticide degradation genes (PDGs) harbored in the AS from wastewater treatment plants (WWTPs). In this study, we explored the bacterial communities and BDGs/PDGs in the AS from five WWTPs affiliated with pesticide factories across four consecutive seasons based on high-throughput sequencing. The AS in pesticide WWTPs exhibited unique bacterial taxa at the genus level. Furthermore, a total of 17 BDGs and 68 PDGs were explored with a corresponding average relative abundance of 0.002–0.046% and 2.078–7.143% in each AS sample, respectively, and some BDGs/PDGs clusters were also identified in the AS. The bacterial communities and BDGs/PDGs were season-dependent, and the total variations of 50.4% and 76.8% were jointly explained by environmental variables (pesticide types, wastewater characteristics, and temperature). In addition, network analysis and distribution patterns suggested that the potential hosts of BDGs/PDGs were Thauera, Stenotrophomonas, Mycobacterium, Hyphomicrobium, Allochromatium, Ralstonia, and Dechloromonas. Our findings demonstrated the linkages of bacterial communities and BDGs/PDGs in the AS, and depended on the seasons and the pesticide wastewater characteristics.
Show more [+] Less [-]