Refine search
Results 1-10 of 1,046
Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations
2022
Lin, Shao | Ryan, Ian | Paul, Sanchita | Deng, Xinlei | Zhang, Wangjian | Luo, Gan | Dong, Guang-Hui | Nair, Arshad | Yu, Fangqun
While the health impacts of larger particulate matter, such as PM₁₀ and PM₂.₅, have been studied extensively, research regarding ultrafine particles (UFPs or PM₀.₁) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013–2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lag0–lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7–1.2), and delayed and prolonged ERs%: 0.1–0.3 (95% CIs: 0.1–0.5) between UFPnc and CVDs (lag0-3–lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5–17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.
Show more [+] Less [-]Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massachusetts, USA
2022
Wang, Ting | Obrist, Daniel
Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L⁻¹ and 6.56 ± 3.70 ng L⁻¹, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L⁻¹ and 0.88 ± 0.34 ng L⁻¹, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L⁻¹ and 0.56 ± 0.25 ng L⁻¹, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr⁻¹ which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr⁻¹ and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 μg kg⁻¹) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 μg kg⁻¹) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.
Show more [+] Less [-]The use of image analysis techniques for the study of muscle melanisation in sand flathead (Platycephalus bassensis)
2022
Ooi, Chun Kit | Lewis, Trevor | Nowak, Barbara | Lyle, Jeremy | Haddy, James
Muscle melanisation in sand flathead is visible as black spots in the normally white flesh of fish. It is widespread in Tasmania, including at the Tamar Estuary, with increasing frequency of reporting by recreational fishers. The phenomenon is more prevalent in areas impacted by heavy metal pollution and has been linked to heavy metal accumulation. In this study, image processing software ImageJ was employed to study the phenomenon and to establish an objective rating system. A longitudinal profile plot was used to study the greying of the fillet. The degree of melanisation was rated based on the percentage surface area melanised on the surface and in transverse sections of fillets. A muscle melanisation scoring system for sand flathead was established based on visual interpretation using the macroscopic melanisation scoring criteria: melanisation scores 0 = <0.5%, 1 = 0.5–5%, 2 = 5–20%, and 3 = >20% (% = melanised surface area in proportion to the whole fillet). A refined image analysis technique was developed to quantify the percentage of melanised muscle surface area and the muscle melanisation scoring system was statistically validated. Sand flathead fillet with higher melanisation score was shown to be linked to increased intensity of greyness and greater numbers and size of black spots on the surface of fillets and within the flesh. The greying and black spots were primarily concentrated at the anterior region of fillet and around the dorsal vertebrae zone on transverse section of fillets. Overall, findings from this study established the use of image analysis techniques to validate visual inspection and to give a standardised and objective method to determine the degree of melanisation in sand flathead. As muscle melanisation appears to be linked to heavy metal pollution, the standardised scoring system would facilitate future research for environmental pollution and monitoring purposes.
Show more [+] Less [-]Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides
2022
Yang, Yadong | Piao, Yunxian | Wang, Ruofan | Su, Yaoming | Qiu, Jinrong | Liu, Na
In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO₃, KOH and H₂O₂ with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS⁻ and S²⁻ mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.
Show more [+] Less [-]Low-temperature aerobic carbonization and activation of cellulosic materials for Pb2+ removal in water source
2022
Ai, Shuo | Qin, Yue | Hong, Yuxiang | Liu, Linghui | Yu, Wanguo
Targeting the removal of Pb²⁺ in wastewater, cellulosic materials were carbonized in an aerobic environment and activated via ion exchange. The maximum adsorption capacity reached 243.5 mg/g on an MCC-derived adsorbent activated with sodium acetate. The modified porous properties improved the adsorption capacity. The capacity could be completely recovered five times through elution with EDTA. Because of the negative effects of Ni, Mg, and Ca elements, the adsorption capacities of activated carbonized natural materials were lower than that of pure cellulose. N₂ adsorption measurement showed that the adsorbent had a large specific surface area as well as abundant micropores and 4-nm-sized mesopores. FTIR and surface potential results proved that carboxyl group was generated in the aerobic carbonization, and was deprotonated during ion exchange. This adsorbent consisted of C–C bonds as the building blocks and hydrophilic groups on the surface. XPS results demonstrated that the Pb 4f binding energies were reduced by 0.7–0.8 eV due to the interaction between Pb²⁺ and the activated adsorbent, indicating that the carboxylate groups bonded with Pb²⁺ through coordination interactions. Pseudo-second-order and Elovich kinetic models were well fitted with the adsorption processes on the pristine and activated carbonized adsorbents, indicative of chemisorption on heterogeneous surfaces. The Freundlich expression agreed well with the data measured, and the pristine and activated adsorbents had weak and strong affinities for Pb²⁺, respectively. The Pb²⁺ adsorption process was exothermic and spontaneous, and heat release determined the spontaneity. The adsorption capacity is attributed to the carboxylate groups and pores generated in the aerobic oxidation and ion exchange procedures.
Show more [+] Less [-]Synthesis, characterization and performances of green rusts for water decontamination: A review
2022
Yao, Wenjing | Zhang, Jinhua | Gu, Kaili | Li, Jinxiang | Qian, Jieshu
In recent years, the application of green rusts (GRs) for water purification has received significant attention, but its full understanding has not been well achieved. Then, the comprehension about the synthesis and characteristics of GRs can highly favor their decontamination performances for the site-specific conditions. This review comprehensively summarized the synthesis, characteristics and performances of GRs including the GR (Cl⁻), GR (CO₃²⁻) and GR (SO₄²⁻) for sequestration of various aqueous pollutants (e.g., tetrachloride, Cr(VI), Se(VI), and U(VI), etc.). Generally, the different reactivity of GRs toward contaminants is strongly dependent on the GRs’ characteristics (e.g., interlayer distance, specific surface area, and Fe(II) content) and solution chemistry (e.g., pH, background electrolytes, dissolved oxygen, and contaminant concentration, etc.). In addition, the reaction mechanisms of GRs with the contaminants involve the redox reactions, adsorption, catalytic oxidation, interlayer and octahedral incorporation, which can mutually or singly contribute to the decontamination to varying degrees. Particularly, this review addressed the transformation pathways of GRs under various solution chemistry conditions and clarified that the stability of GRs should be the key challenge for the real application. Finally, how to effectively use the GRs for water decontamination was proposed, which will significantly benefit the rational control of environmental pollution.
Show more [+] Less [-]Road salt compromises functional morphology of larval gills in populations of an amphibian
2022
Szeligowski, Richard V. | Scanley, Jules A. | Broadbridge, Christine C. | Brady, Steven P.
Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts—where ionoregulation and gas exchange occur—and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.
Show more [+] Less [-]Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds
2022
Vēlāyutan̲, T. A. | Rizwan, Komal | Rahdar, Abbas | Badran, Mohamed Fathy | Iqbal, Hafiz M.N.
Volatile organic compounds (VOCs) represent a considerable threat to humans and ecosystems. Strategic remediation techniques for the abatement of VOCs are immensely important and immediately needed. Given a unique set of optical, mechanical, electrical, and thermal characteristics, inimitable surface functionalities, porous structure, and substantial specific surface area, graphene and derived nanohybrid composites have emerged as exciting candidates for abating environmental pollutants through photocatalytic degradation and adsorptive removal. Graphene oxide (GO) and reduced graphene oxide (rGO) containing oxygenated function entities, i.e., carbonyl, hydroxyl, and carboxylic groups, provide anchor and dispersibility of their surface photocatalytic nanoscale particles and adsorptive sites for VOCs. Therefore, it is meaningful to recapitulate current state-of-the-art research advancements in graphene-derived nanostructures as prospective platforms for VOCs degradation. Considering this necessity, this work provides a comprehensive and valuable insight into research progress on applying graphene-based nanohybrid composites for adsorptive and photocatalytic abatement of VOCs in the aqueous media. First, we present a portrayal of graphene-based nanohybrid based on their structural attributes (i.e., pore size, specific surface area, and other surface features to adsorb VOCs) and structure-assisted performance for VOCs abatement by graphene-based nanocomposites. The adsorptive and photocatalytic potentialities of graphene-based nanohybrids for VOCs are discussed with suitable examples. In addition to regeneration, reusability, and environmental toxicity aspects, the challenges and possible future directions of graphene-based nanostructures are also outlined towards the end of the review to promote large-scale applications of this fascinating technology.
Show more [+] Less [-]Effects of synthesis temperature on ε-MnO2 microstructures and performance: Selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001)
2022
Yang, Yuebei | Wang, Yaozhong | Li, Xiaofei | Xue, Chao | Dang, Zhi | Zhang, Lijuan | Yi, Xiaoyun
The heavy-metal adsorbent ε-MnO₂ was produced through a simple, one-step oxidation-reduction reaction at three different synthesis temperatures (25 °C, 50 °C and 75 °C) and their morphology and chemical-physical properties were compared. Of the three materials, MnO₂-25 had the largest specific surface area and the highest surface hydroxyl concentration. Its optimal performance was demonstrated by batch adsorption experiments with Pb²⁺, Cd²⁺ and Cu²⁺. Of the three metals, Pb²⁺ was adsorbed best (339.15 mg/g), followed by Cd²⁺ (107.50 mg/g) and Cu²⁺ (86.30 mg/g). When all three metals were present, Pb²⁺ was still absorbed best but now more Cu²⁺ was adsorbed than Cd²⁺. In order to explore the mechanism for the inconsistent adsorption order of Cd²⁺ and Cu²⁺ in single and competitive adsorption, we combined experimental data with density functional theory (DFT) calculations to elucidate the distinct adsorption nature of MnO₂-25 towards these three metals. This revealed that the adsorption affinity of the (100) facet was superior to (001), and since the surface complexes were also more stable on (100), this facet was most likely determining the adsorption order for the single metals. When the metals were present in combination, Pb²⁺ preferentially occupied the active adsorption sites of (100), forcing Cu²⁺ to be adsorbed on the (001) facet where Cd²⁺ was only poorly bound. Thus, the adsorption behavior was affected by MnO₂-25 surface chemistry at a molecular scale. This study provides an in-depth understanding of the adsorption mechanisms of the heavy metals on this adsorbent and offers theoretical guidance for production of adsorbent with improved removal efficiency.
Show more [+] Less [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
Show more [+] Less [-]