Refine search
Results 1-7 of 7
Engineering Properties of Substrate used in Constructed Wetlands Treating low Strength Sewage under Tropical Conditions Full text
2023
Vishwakarma, Smily | Dharmendra, Dharmendra | Singh, Rohit | Bharti, Bharti | Ankita, Ankita
Substrates play a major role to filter, adsorb, sediment, flocculate, precipitate, and exchange ions. In CW (Constructed wetland), selecting substrate or bed materials is not difficult, as locally accessible, cost-effective, and environment-friendly materials can be used based on size, hydraulic conductivity, texture, porosity, etc. CW substrates undergo a multitude of purification processes, including physical filtration and sedimentation, sorption, ion exchange and microbial degradation, precipitation, and bio-immobilization in the substrate, in addition to uptake and metabolism by macrophytes. With constructed wetlands, treatment facilities with well-defined substrates, vegetation species, and flow patterns can be built with greater control than with natural systems. This report details investigations of some of the locally available substrates that all fit the requirements. Based on analysis of parameters which are pH, water absorption capacity, hydraulic conductivity, porosity, surface area, bulk density, particle size distribution, D10 particle diameter, D60 uniformity coefficient, permeability and specific gravity, a comparison of four materials is presented in this paper. The study found that the construction waste materials evaluated showed satisfactory physical properties for use as filler media in constructed wetlands for wastewater treatment.
Show more [+] Less [-]Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria Full text
2023
Ogunniyi, A.I. | Omotayo, A.O. | Olagunju, K.O. | Motunrayo, O. | Awotide, B.A. | Mavrotas, G. | Aremu, A.O.
One of the most serious challenges threatening agricultural sustainability in Nigeria is land degradation. Although this issue has received little attention, soil and water conservation practices have been identified as a possible pathway out of the potential problems posed by land degradation. Therefore, the central research question that this paper tries to address is the following: Do adoption of soil and water conservation (SWC) practices affect crop productivity and household welfare? This paper uses data collected by the International Institute of Tropical Agriculture (IITA) from maize farmers in rural Nigeria. We usedemploy the propensity score matching (PSM), inverse probability weighting adjusted regression model (IPWRA) approach, and the linear regression with endogenous treatment effect (LRETE) model to incorporate the typologies of SWC practices, and tested how the model affects crop productivity and household welfare. Additionally, multinomial logit was used to estimate the factors influencing the decision to adopt single and multiple SWC practices. The estimates show that education, age of the household head, access to credit, experience of drought, soil fertility, and occupational stress contribute to the decision to adopt SWC practices. The casual effect estimates reveal that both single and multiple adoptions of SWC practices had a positive and significant relationship with the crop productivity and welfare of the adopters. The results show that the adoption of combined SWC practices has a higher impact on crop productivity and welfare than single SWC practices. For instance, the adoption of a combination of three SWC practices was found to increase crop productivity and household welfare by 27.55% and 38.23%, respectively versus 13.91% and 15.11% in the case of single SWC practices. The study suggests that profile-raising agenda and efforts that focus on promoting the adoption of combination of SWC practices should be designed and implemented to enhance crop productivity and hence the welfare of the maize farming households in rural Nigeria.
Show more [+] Less [-]Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria Full text
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
Do soil and water conservation practices influence crop productivity and household welfare? Evidence from rural Nigeria Full text
2023
Ogunniyi, Adebayo Isaiah; Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Motunrayo, Olyeyemi; Awotide, Bola Amoke; Mavrotas, George; Oladapo, Adeyemi
PR | IFPRI3; ISI; CRP3.2; 4 Transforming Agricultural and Rural Economies | Development Strategies and Governance (DSG); Transformation Strategies | CGIAR Research Program on Maize (MAIZE)
Show more [+] Less [-]Effect of Soil and Foliar Application of Humic Acid and Brassinolide on Morpho-physiological and Yield Parameters of Black Gram (Vigna mungo) Full text
2023
More Kiran Narayan, Anita Jaswal and Arshdeep Singh
During the Kharif season of 2022-2023 at Lovely Professional University, Jalandhar, Punjab, a field experiment was conducted to investigate the “Effect of soil and foliar application of humic acid and brassinolide on morpho-physiological and yield parameters of Black gram (Vigna mungo).” The experiment was designed using a Randomised Block Design (RBD) with three replications and eight treatments. Compared to the other treatments, RDF + humic acid 0.1% + brassinolide 0.1ppm (foliar application) was the optimal treatment for most morphological and yield parameters. Plant height (cm), number of primary branches per plant, number of secondary branches per plant, dry matter accumulation (g), chlorophyll Index (SPAD), and leaf area (cm2) were highest under T7- RDF + humic acid 0.1%+brassinolide 0.1ppm (foliar applied) conditions. Minimum phenological observations were recorded for soil and foliar applications of brassinolide, including days to first flowering, days to 50 percent flowering, and days to pod initiation. Number of pods /plant, pod length(cm), pod weight (g), no. of seeds /pod, test weight (g), seed yield (q/ha), stover yield (q/ha), and harvest index (%) were significantly influenced by the T7 and recorded higher values. The increased seed yield may be attributable to plants treated with growth regulators remaining physiologically more active to accumulate sufficient food reserves for developing blossoms and seeds.
Show more [+] Less [-]Environmental Sustainability: Can Artificial Intelligence be an Enabler for SDGs? Full text
2023
Gyandeep Chaudhary
Environmental issues have continued to spur discussions, debates, public outrages, and awareness campaigns, inciting interest in emerging technologies such as Artificial Intelligence. Its usage is spread across many environmental industries, including wildlife protection, natural resource conservation, clean energy, agriculture, energy management, pollution control, and waste management. In 2017, at the United Nations Artificial Intelligence Summit in Geneva, the UN acknowledged that AI could be an enabler in the sustainable development process towards peace, prosperity, and dignified life for humankind and proposed to refocus on the application of AI in assisting global efforts on sustainable development to eradicate poverty, hunger and to protect the environment as well as to conserve natural resources. It is vital to address environmental sustainability concerns; however, with the advent of AI, most common environmental issues are now solvable by prioritizing human interests. Sustainability encompasses the interrelated areas of the environment, society, and economy. According to the United Nations’ “Our Common Future,” also known as the “Brundtland Report,” it is defined as “development that satisfies current needs without compromising the ability of future generations to meet their own needs.” Unfortunately, the Earth is currently facing serious consequences from global warming and climate change, and immediate action is required to encourage the use of environmentally friendly and sustainable products to address these issues. Environmental degradation and climate change are numerous environmental concerns requiring novel and intelligent artificial intelligence solutions. The literature on AI and environmental sustainability encompasses various domains. Notably, AI is being used to address the bulk of regional and global environmental concerns, including energy, water, biodiversity, and transportation, even though many of these sectors have permeated and evolved. However, there is a need to combine current literature on the application of AI, particularly in relation to environmental sustainability in areas such as energy, water, biodiversity, and transportation. There is a significant lack of research on how AI can promote environmental sustainability. This research aims to explore how AI can be applied to address environmental issues in various sectors to achieve the Sustainable Development Goals (SDGs).
Show more [+] Less [-]Locating the Contours of Sustainability and Environmental Protection Within Competition Law in India: Swinging in Tandem or Isolation? Full text
2023
Pallavi Mishra
Environmental policy plays a major role in integrating environmental protection goals into economic policy areas. Environmental deterioration will proceed rapidly until this intersection is successfully achieved. The paper uses European Green Deal as a reference for fostering sustainable development goals through competition laws. This paper discusses sustainability in the context of the competition laws of various jurisdictions such as the European Union (EU), the United States (US), the United Kingdom (UK), and India. While highlighting conflicts around the intersection of competition law and environmental policies, this paper also provides their solution for making competition law environment-friendly. It suggests implementing such laws to promote sustainability and progress toward climate neutrality.
Show more [+] Less [-]Intellectual Property Rights Regime in Green Technology: Way Forward to Sustainability Full text
2023
Z. A. Khan and Shireen Singh
Climate change crises and environmental imbalances have been a significant concern globally in recent times. The climatic changes give rise to various issues such as global warming, depletion of the ozone layer, deterioration of natural resources, soil erosion, deforestation, and more. Many international and national agreements and policies have been created to protect the environment, from the UNFCCC to the recent Paris Agreement, aiming to control rising environmental issues. However, developed and developing countries must achieve desirable results in combating climate change. Industrial and technological developments are critical reasons for environmental pollution and degradation. Progress is necessary for planned developing countries, but growth and expansions shall also consider ecological sustainability. Technology shall be novel in adapting to the changes, considering the effects it can produce on the environment. Green technology combines technology with the environment, also called environmental technology, clean technology, or sustainable technology. It is a combination of science and technology together to mitigate climatic changes and protect the environment. Green technology is the modern sustainable solution to pressing environmental concerns. India is one of the countries globally showing rapid green technology developments. The authors of this paper have tried to highlight the dire need to modify technological developments vis-a-vis environmental sustainability to protect the environment. The research paper delves into and understands the interface between clean technology’s importance and relevance for ecological sustainability and the role of patent law, particularly in dealing with issues of the environment. The paper shall also establish a harmonious relationship between patent law and its role in ensuring environmental sustainability.
Show more [+] Less [-]