Refine search
Results 1-10 of 42
Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties Full text
2022
Sun, Simiao | Feng, Yuhan | Huang, Guodong | Zhao, Xu | Song, Fuqiang
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF–crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m²/s, and the optical compensation point reached 24.0 μmol/m²/s under Cd stress. The Ri–hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri–hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri–hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
Show more [+] Less [-]Physiological stress response of the scleractinian coral Stylophora pistillata exposed to polyethylene microplastics Full text
2020
Lanctôt, Chantal M. | Bednarz, Vanessa N. | Melvin, Steven | Jacob, Hugo | Oberhaensli, François | Swarzenski, Peter W. | Ferrier-Pagès, Christine | Carroll, Anthony R. | Metian, Marc
We investigated physiological responses including calcification, photosynthesis and alterations to polar metabolites, in the scleractinian coral Stylophora pistillata exposed to different concentrations of polyethylene microplastics. Results showed that at high plastic concentrations (50 particles/mL nominal concentration) the photosynthetic efficiency of photosystem II in the coral symbiont was affected after 4 weeks of exposure. Both moderate and high (5 and 50 particles/mL nominal) concentrations of microplastics caused subtle but significant alterations to metabolite profiles of coral, as determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Specifically, exposed corals were found to have increased levels of phosphorylated sugars and pyrimidine nucleobases that make up nucleotides, scyllo-inositol and a region containing overlapping proline and glutamate signals, compared to control animals. Together with the photo-physiological stress response observed and previously published literature, these findings support the hypothesis that microplastics disrupt host-symbiont signaling and that corals respond to this interference by increasing signaling and chemical support to the symbiotic zooxanthellae algae. These findings are also consistent with increased mucus production in corals exposed to microplastics described in previous studies. Considering the importance of coral reefs to marine ecosystems and their sensitivity to anthropogenic stressors, more research is needed to elucidate coral response mechanisms to microplastics under realistic exposure conditions.
Show more [+] Less [-]Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river Full text
2020
Zhou, Lei | Liu, Li | Chen, Wei-Yuan | Sun, Ji-Jia | Hou, Shi-Wei | Kuang, Tian-Xu | Wang, Wen-Xiong | Huang, Xian-De
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO₃–N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Show more [+] Less [-]Atmospheric phenanthrene pollution modulates carbon allocation in red clover (Trifolium pratense L.) Full text
2011
Desalme, Dorine | Binet, Philippe | Epron, Daniel | Bernard, Nadine | Gilbert, Daniel | Toussaint, Marie-Laure | Plain, Caroline | Chiapusio, Geneviève
The influence of atmospheric phenanthrene (PHE) exposure (160μgm⁻³) during one month on carbon allocation in clover was investigated by integrative (plant growth analysis) and instantaneous ¹³CO₂ pulse-labelling approaches. PHE exposure diminished plant growth parameters (relative growth rate and net assimilation rate) and disturbed photosynthesis (carbon assimilation rate and chlorophyll content), leading to a 25% decrease in clover biomass. The root-shoot ratio was significantly enhanced (from 0.32 to 0.44). Photosynthates were identically allocated to leaves while less allocated to stems and roots. PHE exposure had a significant overall effect on the ¹³C partitioning among clover organs as more carbon was retained in leaves at the expense of roots and stems. The findings indicate that PHE decreases root exudation or transfer to symbionts and in leaves, retains carbon in a non-structural form diverting photosynthates away from growth and respiration (emergence of an additional C loss process).
Show more [+] Less [-]Isolated and combined effects of thermal stress and copper exposure on the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii Full text
2021
da Silva Fonseca, Juliana | Mies, Miguel | Paranhos, Alana | Taniguchi, Satie | Güth, Arthur Z. | Bícego, Márcia C. | Marques, Joseane Aparecida | Fernandes de Barros Marangoni, Laura | Bianchini, Adalto
Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 μg L⁻¹). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.
Show more [+] Less [-]Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals Full text
2020
Levy, Oren | Fernandes de Barros Marangoni, Laura | I. C. Benichou, Jennifer | Rottier, Cécile | Béraud, Eric | Grover, Renaud | Ferrier-Pagès, Christine
Artificial Light at Night (ALAN), which is the alteration of natural light levels as the result of anthropogenic light sources, has been acknowledged as an important factor that alters the functioning of marine ecosystems. Using LEDs light to mimic ALAN, we studied the effect on the physiology (symbiont and chlorophyll contents, photosynthesis, respiration, pigment profile, skeletal growth, and oxidative stress responses) of two scleractinian coral species originating from the Red Sea. ALAN induced the photoinhibition of symbiont photosynthesis, as well as an overproduction of reactive oxygen species (ROS) and an increase in oxidative damage to lipids in both coral species. The extent of the deleterious effects of ALAN on the symbiotic association and coral physiology was aligned with the severity of the oxidative stress condition experienced by the corals. The coral species Sylophora pistillata, which experienced a more severe oxidative stress condition than the other species tested, Turbinaria reniformis, also showed a more pronounced bleaching (loss of symbionts and chlorophyll content), enhanced photoinhibition and decreased photosynthetic rates. Findings of the present study further our knowledge on the biochemical mechanisms underpinning the deleterious impacts of ALAN on scleractinian corals, ultimately shedding light on the emerging threat of ALAN on coral reef ecology. Further, considering that global warming and light pollution will increase in the next few decades, future studies should be taken to elucidate the potential synergetic effects of ALAN and global climate change stressors.
Show more [+] Less [-]Behavior of eukaryotic symbionts in large benthic foraminifers Calcarina gaudichaudii and Baculogypsina sphaerulata under exposure to wastewater Full text
2020
Akther, Shumona | Suzuki, Jumpei | Pokhrel, Preeti | Okada, Teruhisa | Imamura, Masahiro | Enomoto, Tadao | Kitano, Takashi | Kuwahara, Yuji | Fujita, Masafumi
Large benthic foraminifers (LBFs) are significant contributors to coral island formation in the Pacific Ocean. In recent years, the population of LBFs has decreased because of the increase in anthropogenic influences, such as wastewater (WW) discharge. To implement efficient mitigation measures, pollution tolerance in LBFs should be understood. However, the effects of WW on LBFs and their symbionts have not yet been demonstrated. This study examined the changes in the photosynthetic efficiency (Y[II]) of Calcarina gaudichaudii and Baculogypsina sphaerulata in response to WW by using a pulse-amplitude-modulation fluorometer. These LBFs were exposed to WW with different dilution levels for 22 days. The Y(II) values of the LBFs were found to deteriorate within 1–2 days. However, the Y(II) values both deteriorated and were enhanced in the experiments, thus indicating that WW contains both harmful and beneficial components. Baculogypsina sphaerulata showed an earlier response and greater sensitivity to WW and a higher epibiont infestation than C. gaudichaudii. This result can be attributed to the differences in the physiological and morphological responses of distinct LBFs. A sequencing analysis of 18S rDNA confirmed that the dominant eukaryotic symbionts in the two LBFs studied were Ochrophyta and Labyrinthulomycetes. These eukaryotic symbionts were released and attached as epibionts onto LBFs that were exposed to WW, thus leading to an increase in inactive LBFs. The Shannon–Weaver and Simpson diversity indices revealed that eukaryotic symbiont communities decreased in biodiversity after exposure to WW because of the abundance of algal symbionts. On the basis of these results, we conclude that WW, even with 10,000 × dilution, causes a decrease in active LBF populations owing to the release of eukaryotic symbionts, the decrease in biodiversity, and the infestation of epibionts even though Y(II) is temporarily enhanced. These responses are more significant in B. sphaerulata than in C. gaudichaudii.
Show more [+] Less [-]Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro Full text
2016
Kesy, Katharina | Oberbeckmann, Sonja | Müller, Felix | Labrenz, Matthias
Plastic is ubiquitous in global oceans and constitutes a newly available habitat for surface-associated bacterial assemblages. Microplastics (plastic particles <5 mm) are especially susceptible to ingestion by marine organisms, as the size of these particles makes them available also to lower trophic levels. Because many marine invertebrates harbour potential pathogens in their guts, we investigated whether bacterial assemblages on polystyrene are selectively modified during their passage through the gut of the lugworm Arenicola marina and are subsequently able to develop pathogenic biofilms. We also examined whether polystyrene acts as a vector for gut biofilm assemblages after subsequent incubation of the egested particles in seawater. Our results showed that after passage through the digestive tract of A. marina, the bacterial assemblages on polystyrene particles and reference glass beads became more similar, harbouring common sediment bacteria. By contrast, only in the presence of polystyrene the potential symbiont Amphritea atlantica was enriched in the investigated biofilms, faeces, and water. Thus, especially in areas of high polystyrene contamination, this polymer may impact the bacterial composition of different habitats, with as yet unknown consequences for the respective ecosystems.
Show more [+] Less [-]Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species Full text
2022
Bednarz, V.N. | Choyke, S. | Marangoni, L.F.B. | Otto, E.I. | Béraud, E. | Metian, M. | Tolosa, I. | Ferrier-Pagès, C.
Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.
Show more [+] Less [-]Coral recruits are highly sensitive to heavy fuel oil exposure both in the presence and absence of UV light Full text
2022
Nordborg, F Mikaela | Brinkman, Diane L. | Negri, Andrew P.
Oil pollution remains a prominent local hazard to coral reefs, but the sensitivity of some coral life stages to oil exposure remains unstudied. Exposure to ultraviolet radiation (UVR), ubiquitous on coral reefs, may significantly increase oil toxicity towards these critical habitat-forming taxa. Here we present the first data on the sensitivity of two distinct post-settlement life stages of the model coral species Acropora millepora to a heavy fuel oil (HFO) water accommodated fraction (WAF) in the absence and presence of UVR. Assessment of lethal and sublethal endpoints indicates that both 1-week-old and 2-month-old recruits (1-wo and 2-mo) were negatively affected by chronic exposures to HFO (7 and 14 days, respectively). Relative growth (1-wo and 2-mo recruits) and survival (1-wo recruits) at end of exposure were the most sensitive endpoints in the absence of UVR, with no effect concentrations (NEC) of 34.3, 5.7 and 29.3 μg L⁻¹ total aromatic hydrocarbons (TAH; ∑39 monocyclic- and polycyclic aromatic hydrocarbons), respectively. On average, UVR increased the negative effects by 10% for affected endpoints, and latent effects of exposure were evident for relative growth and symbiont uptake of recruits. Other sublethal endpoints, including maximum quantum yield and tissue colour score, were unaffected by chronic HFO exposure. A comparison of putative species-specific sensitivity constants for these ecologically relevant endpoints, indicates A. millepora recruits may be as sensitive as the most sensitive species currently included in oil toxicity databases. While the low intensity UVR only significantly increased the negative effects of the oil for one endpoint, the majority of endpoints showed trends towards increased toxicity in the presence of UVR. Therefore, the data presented here further support the standard incorporation of UVR in oil toxicity testing for tropical corals.
Show more [+] Less [-]