Refine search
Results 1-10 of 13
Muscle melanisation of southern sand flathead (Platycephalus bassensis) in the Tamar Estuary, Tasmania, Australia
2020
Stocker, Clayton W. | Haddy, James | Lyle, Jeremy | Nowak, Barbara F.
Tasmanian recreational fishers have reported the presence of dark pigmentations in the usually white fillets of southern sand flathead (Platycephalus bassensis), a phenomenon known as muscle melanisation. Based on histology, it is suggested that eumelanin and pheomelanin are involved in the occurrence of the phenomenon. A gross melanisation scoring system was validated through a comparison with an image analysis technique, that quantified the percentage surface area of the fillets affected by muscle melanisation. The occurrence of muscle melanisation was most severe in fish inhabiting Deceitful Cove, Tamar Estuary. This indicated that muscle melanisation in P. bassensis may be caused by yet to be identified site specific factors. No significant relationships were evident between the percentage surface area of melanised muscle with condition index, age, sex, maturation stage, fish weight, fish length and size of melano-macrophage centres in the liver or spleen. Overall, this study has provided critical information that will frame the direction and focus of future P. bassensis muscle melanisation research.
Show more [+] Less [-]Low abundance of microplastics in commercially caught fish across southern Australia
2021
Wootton, Nina | Reis-Santos, Patrick | Dowsett, Natalie | Turnbull, Alison | Gillanders, Bronwyn M.
Plastic pollution has increased significantly in the past decades and is now a major global environmental issue. Plastic objects enter the ocean and are broken down into smaller pieces, while wastewater and runoff also carry microplastics (plastics <5 mm) into the ocean. Plastic has been found in over 700 different species of marine wildlife but little research has examined fish sold for human consumption. We determined the microplastic abundance in nine commercially important, wild-caught fish species purchased from seafood markets across 4000 km of Australia (Western Australia, South Australia, Victoria, Tasmania, New South Wales). For microplastic quantification, fish gastro-intestinal tracts were chemically digested and the amount and type of microplastic identified under a microscope and Fourier transform infrared spectrometer. Across all states, an average of 35.5% of fish samples had at least one piece of microplastic in their gastro-intestinal tract. South Australia had the highest percentage of fish with plastic (49%) and Tasmania the lowest (20%). The average microplastic load was 0.94 piece per fish but ranged from 0 to 17 pieces, with polyolefin identified as the dominant polymer group. Overall, the ingestion of microplastic was widespread across species, locations, diets and habitat niches of fish species investigated, but the average plastic ingestion was less than other similar global studies. This study provides novel insights on the use of fish species from seafood markets to assess environmental contamination by microplastic, as well as an important perspective of the potential for microplastic contamination to enter the human food chain.
Show more [+] Less [-]The use of image analysis techniques for the study of muscle melanisation in sand flathead (Platycephalus bassensis)
2022
Ooi, Chun Kit | Lewis, Trevor | Nowak, Barbara | Lyle, Jeremy | Haddy, James
Muscle melanisation in sand flathead is visible as black spots in the normally white flesh of fish. It is widespread in Tasmania, including at the Tamar Estuary, with increasing frequency of reporting by recreational fishers. The phenomenon is more prevalent in areas impacted by heavy metal pollution and has been linked to heavy metal accumulation. In this study, image processing software ImageJ was employed to study the phenomenon and to establish an objective rating system. A longitudinal profile plot was used to study the greying of the fillet. The degree of melanisation was rated based on the percentage surface area melanised on the surface and in transverse sections of fillets. A muscle melanisation scoring system for sand flathead was established based on visual interpretation using the macroscopic melanisation scoring criteria: melanisation scores 0 = <0.5%, 1 = 0.5–5%, 2 = 5–20%, and 3 = >20% (% = melanised surface area in proportion to the whole fillet). A refined image analysis technique was developed to quantify the percentage of melanised muscle surface area and the muscle melanisation scoring system was statistically validated. Sand flathead fillet with higher melanisation score was shown to be linked to increased intensity of greyness and greater numbers and size of black spots on the surface of fillets and within the flesh. The greying and black spots were primarily concentrated at the anterior region of fillet and around the dorsal vertebrae zone on transverse section of fillets. Overall, findings from this study established the use of image analysis techniques to validate visual inspection and to give a standardised and objective method to determine the degree of melanisation in sand flathead. As muscle melanisation appears to be linked to heavy metal pollution, the standardised scoring system would facilitate future research for environmental pollution and monitoring purposes.
Show more [+] Less [-]The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia
2020
Beck, K.K. | Mariani, M. | Fletcher, M.-S. | Schneider, L. | Aquino-López, M.A. | Gadd, P.S. | Heijnis, H. | Saunders, K.M. | Zawadzki, A.
Mining causes extensive damage to aquatic ecosystems via acidification, heavy metal pollution, sediment loading, and Ca decline. Yet little is known about the effects of mining on freshwater systems in the Southern Hemisphere. A case in point is the region of western Tasmania, Australia, an area extensively mined in the 19th century, resulting in severe environmental contamination. In order to assess the impacts of mining on aquatic ecosystems in this region, we present a multiproxy investigation of the lacustrine sediments from Owen Tarn, Tasmania. This study includes a combination of radiometric dating (¹⁴C and ²¹⁰Pb), sediment geochemistry (XRF and ICP-MS), pollen, charcoal and diatoms. Generalised additive mixed models were used to test if changes in the aquatic ecosystem can be explained by other covariates. Results from this record found four key impact phases: (1) Pre-mining, (2) Early mining, (3) Intense mining, and (4) Post-mining. Before mining, low heavy metal concentrations, slow sedimentation, low fire activity, and high biomass indicate pre-impact conditions. The aquatic environment at this time was oligotrophic and dystrophic with sufficient light availability, typical of western Tasmanian lakes during the Holocene. Prosperous mining resulted in increased burning, a decrease in landscape biomass and an increase in sedimentation resulting in decreased light availability of the aquatic environment. Extensive mining at Mount Lyell in the 1930s resulted in peak heavy metal pollutants (Pb, Cu and Co) and a further increase in inorganic inputs resulted in a disturbed low light lake environment (dominated by Hantzschia amphioxys and Pinnularia divergentissima). Following the closure of the Mount Lyell Co. in 1994 CE, Ca declined to below pre-mining levels resulting in a new diatom assemblage and deformed diatom valves. Therefore, the Owen Tarn record demonstrates severe sediment pollution and continued impacts of mining long after mining has stopped at Mt. Lyell Mining Co.
Show more [+] Less [-]Seasonal ingestion of anthropogenic debris in an urban population of gulls
2020
Stewart, Lillian G. | Lavers, Jennifer L. | Grant, Megan L. | Puskic, Peter S. | Bond, Alexander L.
Gulls are generalist seabirds, increasingly drawn to urban environments where many species take advantage of abundant food sources, such as landfill sites. Despite this, data on items ingested at these locations, including human refuse, is limited. Here we investigate ingestion of prey and anthropogenic debris items in boluses (regurgitated pellets) from Pacific Gulls (Larus pacificus). A total of 374 boluses were collected between 2018 and 2020 in Tasmania. Debris was present in 92.51% of boluses (n = 346), with plastic (86.63%, n = 324) and glass (64.71%, n = 242) being the most prominent types. An abundance of intact, household items (e.g., dental floss, food wrappers) suggest the gulls regularly feed at landfill sites. In addition, the boluses are deposited at a roosting site located within an important wetland, thus we propose that the gulls may be functioning as a previously unrecognised vector of anthropogenic debris from urban centres to aquatic environments.
Show more [+] Less [-]Investigation of broad scale implementation of integrated multitrophic aquaculture using a 3D model of an estuary
2018
Hadley, Scott | Wild-Allen, Karen | Johnson, Craig | Macleod, Catriona
A 3D ecosystem model was used to quantify changes in water quality brought about by salmon aquaculture in the D'Entrecasteaux Channel and Huon Estuary in southeast Tasmania. Macroalgae-based integrated multitrophic aquaculture (IMTA) was simulated and showed that IMTA is capable of reducing the increased chlorophyll concentration attributable to fish farming by up to 10–15% in large areas of the region, during the season of highest production. Kelp farms (Macrocystis pyrifera) recovered between 6 and 11% of the dissolved inorganic nitrogen (DIN) input by salmon aquaculture over a nine month period, with DIN remediation increasing linearly with farm size. Under a ten-fold increase in aquaculture to very high loads, a much lower remediation effect was found for both chlorophyll and DIN. Model results indicate that IMTA could have an important impact on reducing negative effects of finfish aquaculture on water quality providing that stocking rates are not too high.
Show more [+] Less [-]Inter-annual variation in the density of anthropogenic debris in the Tasman Sea
2017
Rudduck, Osha-Ann | Lavers, Jennifer L. | Fischer, Andrew M. | Stuckenbrock, Silke | Sharp, Paul B. | Banati, Richard B.
An increasing number of studies highlight the risk of plastic pollution in the marine environment. However, systematic longitudinal data on the distribution and abundance of plastic debris remain sparse. Here we present the results of a two-year study of plastic pollution within the Tasman Sea, contrasted with a further year of data from the same region, in order to document how the density of debris varies across years in this area. Surface net tows were collected between Hobart, Tasmania and Sydney, Australia during the spring of 2013 and 2014 and compared with a subset of data from autumn 2012 from the same region. Substantial inter-annual variation in mean plastic abundance was observed over the three year period, ranging from to 248.04–3711.64pieceskm−2, confirming the need for multiple years of sampling to fully estimate the extent of, and trends in, plastic pollution.
Show more [+] Less [-]The ingestion of large plastics by recreationally caught southern bluefin tuna Thunnus maccoyii off southern Australia
2022
Yick, Jonah L. | Travers, Toby
The occurrence of plastic ingestion by fish is increasing around the world, however there are currently very few studies focusing on the ingestion of macro (>20 mm) and mega (>100 mm) plastics in pelagic predatory fish, particularly in Australian waters. Further to this, information on plastic ingestion in recreationally caught fish is deficient. We report on two cases of macroplastic ingestion and another case of megaplastic ingestion by southern bluefin tuna Thunnus maccoyii (Castelnau, 1872), caught recreationally in Tasmania and Victoria. The plastics ingested ranged from 62 to 283 mm. Despite the large obstructive shapes of the pieces of plastic, all three specimens possessed a healthy body mass, with one actively feeding at the time of capture. These preliminary records contribute to the limited information on the effects of plastic pollution on high value recreationally and commercially important pelagic fish in Australia.
Show more [+] Less [-]Ingested plastics in beach-washed Fairy Prions Pachyptila turtur from Tasmania
2022
Lavers, Jennifer L. | de Jersey, Alix M. | Jones, Nina R. | Stewart, Lillian G. | Charlton-Howard, Hayley S. | Grant, Megan L. | Woehler, E. J. (Eric J.)
Plastic is an omnipresent pollutant in marine ecosystems and is widely documented to be ingested among seabird species. Procellariiformes are particularly vulnerable to plastic ingestion, which can cause internal damage, starvation, and occasionally mortality. In this study, 34 fledgling Fairy Prions (Pachyptila turtur) recovered during a wreck event in south-eastern Tasmania in 2022 were examined for ingested plastics and body condition (e.g., wing chord length). While many of the birds exhibited poor body condition, this was not correlated with the count or mass of ingested plastics. We hypothesise the marine heatwave event, and resulting lack of prey, contributed to bird body condition and subsequent mortality. We provide some of the first data on the size of individual plastic particles ingested by seabirds and make recommendations for future studies to report this important metric in a consistent manner that ensures data are comparable.
Show more [+] Less [-]A baseline for POPs contamination in Australian seabirds: little penguins vs. short-tailed shearwaters
2020
Lewis, Phoebe J. | McGrath, Thomas J. | Chiaradia, Andre | McMahon, Clive R. | Emmerson, Louise | Allinson, Graeme | Shimeta, Jeff
While globally distributed throughout the world's ecosystems, there is little baseline information on persistent organic pollutants (POPs) in marine environments in Australia and, more broadly, the Southern Hemisphere. To fill this knowledge gap, we collected baseline information on POPs in migratory short-tailed shearwaters (Ardenna tenuirostris) from Fisher Island, Tasmania, and resident little penguins (Eudyptula minor) from Phillip Island, Victoria. Levels of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs) were determined from blood samples, with total contamination ranging 7.6-47.7 ng/g ww for short-tailed shearwaters and 0.12-46.9 ng/g ww for little penguins. In both species contamination followed the same pattern where PCBs>OCPs>BFRs. BFR levels included the presence of the novel flame retardant hexabromobenzene (HBB). These novel results of POPs in seabirds in southeast Australia provide important information on the local (penguins) and global (shearwaters) distribution of POPs in the marine environment.
Show more [+] Less [-]