Refine search
Results 1-10 of 50
Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun
2018
Deng, Songqiang | Ke-tan, | Li, Longtai | Cai, Shenwen | Zhou, Yuyue | Liu, Yue | Guo, Limin | Chen, Lanzhou | Zhang, Dayi
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
Show more [+] Less [-]Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms
2014
Bayona, Yannick | Roucaute, Marc | Cailleaud, Kevin | Lagadic, Laurent | Bassères, Anne | Caquet, Thierry
The sensitivity of diatom taxonomy and trait-based endpoints to chemicals has been poorly used so far in Environmental Risk Assessment. In this study, diatom assemblages in outdoor flow-through mesocosms were exposed to thiram (35 and 170 μg/L), and a hydrocarbon emulsion (HE; 0.01, 0.4, 2 and 20 mg/L). The effects of exposure were assessed for 12 weeks, including 9 weeks post-treatment, using taxonomic structure and diversity, bioindication indices, biological traits, functional diversity indices, indicator classes and ecological guilds. For both chemicals, diversity increased after the treatment period, and responses of ecological traits were roughly identical with an abundance increase of motile taxa tolerant to organic pollution and decrease of low profile taxa. Bioindication indices were not affected. Traits provided a complementary approach to biomass measurements and taxonomic descriptors, leading to a more comprehensive overview of ecological changes due to organic chemicals, including short- and long-term effects on biofilm structure and functioning.
Show more [+] Less [-]Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment
2022
Malla, Muneer Ahmad | Dubey, Anamika | Raj, Aman | Ashwani Kumar, | Upadhyay, Niraj | Yadav, Shweta
The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions. High throughput next-generation sequencing and in silico analysis allow us to identify and discern the members and characteristics of core microbiomes at the contaminated site. Integration of modern high throughput multi-omics investigations and informatics pipelines provide novel approaches and pathways to capitalize on the core microbiomes for enhancing environmental functioning and mitigation. The role of eco-genomics tools in visualising the microbial network, taxonomy, functional potential, and environmental variables in contaminated habitats is discussed in this review. The integrated role of the potential microbe identification as individual or consortia, mechanistic approach for pesticide degradation, identification of responsible enzymes/genes, and in silico approach is emphasized for the prospects of the area.
Show more [+] Less [-]Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions
2021
Kayani, Masood ur Rehman | Yu, Gan | Qiu, Yushu | Shen, Yao | Gao, Caixia | Feng, Ju | Zeng, Xinxin | Wang, Weiye | Chen, Lei | Su, Huang Li
A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish.
Show more [+] Less [-]Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China
2021
Jiang, Xiawei | Liu, Wenhong | Xu, Hao | Cui, Xinjie | Li, Junfeng | Chen, Jurong | Zheng, Beiwen
Copper mine tailings are causing great environmental concern nowadays due to their high contents of heavy metals. These hazards may release to air, water, and soil, posing great threat to the living organisms in the surroundings. In the present work, we profiled the heavy metal contents, microbiome and resistome of a mine tailing in Dexing Copper Mine, which is the largest open-pit copper mine in China. A total of 39.75 Gb clean data was generated by metagenomics sequencing and taxonomy analysis revealed Actinobacteria, Proteobacteria, Acidobacteria, Euryarchaeota, and Nitrospirae as the most abundant phylum in this tailing. In general, 76 heavy metal resistance genes (HMRGs) and 194 antimicrobial resistance genes (ARGs) were identified with merA and rpoB2 as the most abundant HMRG and ARG, respectively. We also compared the differences of heavy metal concentrations among the six sampling sites in the same tailing and found that significant differences exited in copper and zinc. Hierarchical cluster analysis showed that the samples from the six sampling sites were clustering in two groups based on heavy metal concentrations. Accordingly, clustering based on microbial composition and relative abundances of resistance genes exhibited the same clustering pattern, indicating a possible shaping influence of heavy metals on the microbiome and resistome in this tailing. Our work presented heavy metal contents, microbial composition and resistance genes in a copper mine tailing of the largest copper mine in China, and these data will of great use in the surveillance, maintenance, and remediation of this tailing.
Show more [+] Less [-]Nematode traits after separate and simultaneous exposure to Polycyclic Aromatic Hydrocarbons (anthracene, pyrene and benzo[a]pyrene) in closed and open microcosms
2021
Hedfi, Amor | Ben Ali, Manel | Hassan, Montaser M. | Albogami, Bander | Al-Zahrani, Samia S. | Mahmoudi, Ezzeddine | Karachle, Paraskevi K. | Rohal-Lupher, Melissa | Boufahja, Fehmi
The majority of experimental studies carried out to date, regarding the effects of pollutants on meiofauna have been conducted by means of closed systems, and rarely using open ones. The current work explored the impact of three Polycyclic Aromatic Hydrocarbons (PAHs), anthracene, pyrene and benzo[a]pyrene, applied alone or combined, on meiobenthic nematodes using both systems. The results revealed that single PAHs impacted the nematofauna similarly in closed or open systems with a higher toxicity observed for benzo[a]pyrene. However, the closed microcosms contaminated with PAHs became organically enriched, resulting in more non-selective deposit feeders and omnivores-carnivores. Taxonomic and functional effects related to combinations of PAHs were close to those of individual treatments in closed systems, however, for open ones, the outcomes were different. The caudal morphology influenced the response of taxa during their avoidance/endurance of hydrocarbons in open systems where the effects of PAHs mixtures appeared not only additive but also synergetic. Based on the results of the study, the use of open systems is preferred to closed ones as the research outcomes were more accurate and representing better conditions prevailing in nature.
Show more [+] Less [-]Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function
2021
Wiberg-Larsen, Peter | Nørum, Ulrik | Rasmussen, Jes Jessen
We exposed twelve mesocosm stream channels and four instream channels to one, two, and four pulses of the insecticide lambda-cyhalothrin (0.1 μg L⁻¹) applied at two day intervals, each pulse lasting 90 min. Unexposed controls were included. We monitored macroinvertebrate taxonomic composition in the channels and in deployed leaf packs one day before and 29 days after the first exposure. Further, we measured drift in and out of the channels and leaf litter decomposition. Lambda-cyhalothrin exposures induced significantly increased drift in both experiments especially for Gammarus pulex, Amphinemura standfussi, and Leuctra spp. Macroinvertebrate taxonomic composition increasingly changed with increasing number of lambda-cyhalothrin exposures being most pronounced in the mesocosm channels. Further, leaf decomposition significantly decreased with increasing number of exposures in the mesocosm channels. Our study showed that species with predicted highest sensitivity to lambda-cyhalothrin were primary drivers of significant changes in taxonomic composition lasting for at least one month despite continuous recolonization of exposed channels from upstream parts of the natural stream and from the water inlet in the mesocosm channels. The overall results highlight the importance of sequential exposures to insecticides for understanding the full impact of insecticides on macroinvertebrates at the community level in streams.
Show more [+] Less [-]Elevated pCO2 alters the interaction patterns and functional potentials of rearing seawater microbiota
2021
Lin, Weichuan | Lu, Jiaqi | Yao, Huaiying | Lu, Zhibin | He, Yimin | Mu, Changkao | Wang, Chunlin | Shi, Ce | Ye, Yangfang
Mean oceanic CO₂ values have already risen and are expected to rise further on a global scale. Elevated pCO₂ (eCO₂) changes the bacterial community in seawater. However, the ecological association of seawater microbiota and related geochemical functions are largely unknown. We provide the first evidence that eCO₂ alters the interaction patterns and functional potentials of microbiota in rearing seawater of the swimming crab, Portunus trituberculatus. Network analysis showed that eCO₂ induced a simpler and more modular bacterial network in rearing seawater, with increased negative associations and distinct keystone taxa. Using the quantitative microbial element cycling method, nitrogen (N) and phosphorus (P) cycling genes exhibited the highest increase after one week of eCO₂ stress and were significantly associated with keystone taxa. However, the functional potential of seawater bacteria was decoupled from their taxonomic composition and strongly coupled with eCO₂ levels. The changed functional potential of seawater bacteria contributed to seawater N and P chemistry, which was highlighted by markedly decreased NH₃, NH₄⁺-N, and PO₄³⁻-P levels and increased NO₂⁻-N and NO₃⁻-N levels. This study suggests that eCO₂ alters the interaction patterns and functional potentials of seawater microbiota, which lead to the changes of seawater chemical parameters. Our findings provide new insights into the mechanisms underlying the effects of eCO₂ on marine animals from the microbial ecological perspective.
Show more [+] Less [-]Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil
2021
Li, Huan-Qin | Shen, Ying-Jia | Wang, Wen-Lei | Wang, Hong-Tao | Li, Hu | Su, Jian-Qiang
Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg⁻¹). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.
Show more [+] Less [-]Microbial community responses to different volatile petroleum hydrocarbon class mixtures in an aerobic sandy soil
2020
Mangse, George | Werner, David | Meynet, Paola | Ogbaga, Chukwuma C.
Volatile Petroleum Hydrocarbon (VPH) class effects on soil microbial composition were investigated using two next-generation sequencing (NGS) techniques – 454 pyrosequencing and ion torrent sequencing. Microbial activity was stimulated by adding different VPH compound classes to the sandy soil in comparison with live controls without VPH addition. Microbial community structure was significantly affected by the various VPH classes. At the genus level, Rhodococcus, Desulfosporosinus, Polaromonas, Mesorhizobium and Methylibium had the highest relative abundances in the straight-chain alkane (str-alk) treated soil as compared to the control (p < 0.05, 2 sample t-tests) while Pseudomonas was more dominant in the cyclic alkane (cyc-alk) contaminated soil. Pseudonocardia was significantly higher in relative abundance in the aromatic hydrocarbon (aro-H) treated batches as compared to the control (p < 0.05, 2 sample t-tests). A non-metric multidimensional scaling (NMDS) of the Bray Curtis similarity between microbial communities in the batches revealed at least 60% similarity for each treatment and also showed that VPH class was a statistically significant factor in shaping the bacterial communities in the soil treatments (Global R = 0.861, p < 0.01). The NGS platforms (454 GS Junior and Ion torrent) compared in this study did not appear to affect the outcomes of the microbial community structure and composition analysis.
Show more [+] Less [-]