Refine search
Results 1-10 of 195
A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
Plastic usage increases year by year, and the growing trend is projected to continue. However as of 2017, only 9% of the 9 billion tons of plastic ever produced had been recycled leaving large amounts of plastics to contaminate the environment, resulting in important negative health and economic impacts. Curbing this trend is a major challenge that requires urgent and multifaceted action. Based on scientific and gray literature mainly published during the last 10 years, this review summarizes key solutions currently in use globally that have the potential to address at scale the plastic and microplastic contaminations from source to sea. They include technologies to control plastics in solid wastes (i.e. mechanical and chemical plastic recycling or incineration), in-stream (i.e. booms and clean-up boats, trash racks, and sea bins), and microplastics (i.e. stormwater, municipal wastewater and drinking water treatment), as well as general policy measures (i.e. measures to support the informal sector, bans, enforcement of levies, voluntary measures, extended producer responsibility, measures to enhance recycling and guidelines, standards and protocols to guide activities and interventions) to reduce use, reuse, and recycle plastics and microplastics in support of the technological options. The review discusses the effectiveness, capital expenditure, and operation and maintenance costs of the different technologies, the cost of implementation of policy measures, and the suitability of each solution under various conditions. This guidance is expected to help policymakers and practitioners address, in a sustainable and cost-efficient way, the plastic and microplastic management problem using technologies and policy instruments suitable in their local context.
Show more [+] Less [-]A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
A review of the cost and effectiveness of solutions to address plastic pollution
2022
Nikiema, Josiane | Asiedu, Zipporah
A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
Plastic usage increases year by year, and the growing trend is projected to continue. However as of 2017, only 9% of the 9 billion tons of plastic ever produced had been recycled leaving large amounts of plastics to contaminate the environment, resulting in important negative health and economic impacts. Curbing this trend is a major challenge that requires urgent and multifaceted action. Based on scientific and gray literature mainly published during the last 10 years, this review summarizes key solutions currently in use globally that have the potential to address at scale the plastic and microplastic contaminations from source to sea. They include technologies to control plastics in solid wastes (i.e. mechanical and chemical plastic recycling or incineration), in-stream (i.e. booms and clean-up boats, trash racks, and sea bins), and microplastics (i.e. stormwater, municipal wastewater and drinking water treatment), as well as general policy measures (i.e. measures to support the informal sector, bans, enforcement of levies, voluntary measures, extended producer responsibility, measures to enhance recycling and guidelines, standards and protocols to guide activities and interventions) to reduce use, reuse, and recycle plastics and microplastics in support of the technological options. The review discusses the effectiveness, capital expenditure, and operation and maintenance costs of the different technologies, the cost of implementation of policy measures, and the suitability of each solution under various conditions. This guidance is expected to help policymakers and practitioners address, in a sustainable and cost-efficient way, the plastic and microplastic management problem using technologies and policy instruments suitable in their local context.
Show more [+] Less [-]Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge Full text
2021
Tang, Jian | Qiu, Zhongping | Tang, Hengjun | Wang, Haiyue | Sima, Weiping | Liang, Chao | LIao, Yi | Li, Zhihua | Wan, Shan | Dong, Jianwei
In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H⁺, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.
Show more [+] Less [-]Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite Full text
2009
In this study, the influence of the co-existence of TiO2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO2 nanoparticles than in the absence of TiO2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO2 nanoparticles. The co-existence of TiO2 nanoparticles could change the speciation of arsenite by adsorption and photo-oxidation, and enhance its bioaccumulation to carp.
Show more [+] Less [-]Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation Full text
2009
Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 ± 20 mg Pb kg-1) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO4, PbSO4·PbO, α-PbO and Pb0. Morphology investigations revealed that PM2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 μm or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl2 extraction. The soil-lettuce lead transfer from atmospheric industrial sub-micronic and micronic particles depends on particle size.
Show more [+] Less [-]C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays Full text
2009
Spohn, P. | Hirsch, C. | Hasler, F. | Bruinink, A. | Krug, H.F. | Wick, P.
Since the discovery of fullerenes in 1985, these carbon nanospheres have attracted attention regarding their physico/chemical properties. Despite little knowledge about their impact on the environment and human health, the production of fullerenes has already reached an industrial scale. However, the toxicity of C60 is still controversially discussed. The aim of this study was to clarify the biological effects of tetrahydrofuran (THF) suspended C60 fullerene in comparison to water stirred C60 fullerene suspensions. Beyond that, we analyzed the effects on the Crustacea Daphnia magna an indicator for ecotoxicological effects and the human lung epithelial cell line A549 as a simplified model for the respiratory tract. We could demonstrate that water-soluble side products which were formed in THF nC60 suspension were responsible for the observed acute toxic effects, whereas fullerenes themselves had no negative effect regardless of the preparative route on either A549 cell in vitro or D. magna in vivo. THF suspended nC60 did not show any toxic effect to Daphnia and lung cells when side products were eliminated by additional washing steps.
Show more [+] Less [-]Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro Full text
2009
Auffan, Mélanie | Rose, Jerome | Wiesner, Mark R. | Bottero, Jean-Yves
Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro Full text
2009
Auffan, Mélanie | Rose, Jerome | Wiesner, Mark R. | Bottero, Jean-Yves
The level of production of nanoparticles will inevitably lead to their appearance in air, water, soils, and organisms. A theoretical framework that relates properties of nanoparticles to their biological effects is needed to identify possible risks to human health and the environment. This paper considers the properties of dispersed metallic nanoparticles and highlights the relationship between the chemical stability of these nanoparticles and their in vitro toxicity. Analysis of published data suggests that chemically stable metallic nanoparticles have no significant cellular toxicity, whereas nanoparticles able to be oxidized, reduced or dissolved are cytotoxic and even genotoxic for cellular organisms. The ability of metallic nanoparticles to be oxidized, reduced or dissolved in biological media can be used to predict their toxicity in vitro.
Show more [+] Less [-]Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro Full text
2009
Auffan, Melanie | Rose, Jérôme | Wiesner, Mark, R | Bottero, Jean-Yves | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Duke University [Durham]
International audience | The ability of metallic nanoparticles to be oxidized, reduced or dissolved in biological media can be used to predict their toxicity in vitro. a b s t r a c t The level of production of nanoparticles will inevitably lead to their appearance in air, water, soils, and organisms. A theoretical framework that relates properties of nanoparticles to their biological effects is needed to identify possible risks to human health and the environment. This paper considers the properties of dispersed metallic nanoparticles and highlights the relationship between the chemical stability of these nanoparticles and their in vitro toxicity. Analysis of published data suggests that chemically stable metallic nanoparticles have no significant cellular toxicity, whereas nanoparticles able to be oxidized, reduced or dissolved are cytotoxic and even genotoxic for cellular organisms.
Show more [+] Less [-]Remediation technology towards zero plastic pollution: Recent advance and perspectives Full text
2022
Ji, Jianghao | Zhao, Tong | Li, Fanghua
The rapid growth of plastic wastes exceeds efforts to eliminate plastic pollution owing to the outbreak of COVID-19 in 2020 and then aggravates inherent environmental threats to the ecosystem. The paper provided a short introduction relating to the hazards of plastic wastes on environment and a detailed statement about plastic toxicity on human. The article stated on plastic how to enter the body and cause harm for us step by step. Given the toxicity and harm of plastic wastes on human, the degradation of plastic wastes via the physical, chemical and biotic methodologies is looked back. The advanced physical techniques are introduced briefly at firstly. Additionally, evaluate on chemical method for plastic decomposition and review on biotic degradation of plastic. The reactive oxygen species and the enzymes play a crucial role in chemical and biotic degradation processes, respectively. The reactive oxygen species are derived from the activated state of oxides, and the enzymes that aid the microorganism to ingest plastic through its metabolic mechanism are secreted by the microorganism. Subsequently, the potential possibility of upcycling plastic is analyzed from two aspects of the technology and application. The innovative technology utilizes sunlight as driver-power of plastic upcycling. And the carbon capture, utilization and sequestration and the growth substrate provided the novel guided directions for plastic recycle. Lastly, the three suggestions on plastic waste management are expected to establish an economy and efficient plastic sorting system, and two engineering solutions on plastic recycle are to make a contribution for sustainable upcycling of plastic.
Show more [+] Less [-]Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans Full text
2009
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L-1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L-1) and bulk Al2O3 (153 mg L-1), and between TiO2 NPs (80 mg L-1) and bulk TiO2 (136 mg L-1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. ZnO, Al2O3 and TiO2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans.
Show more [+] Less [-]Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure Full text
2009
Panessa-Warren, Barbara J. | Maye, Mathew M. | Warren, John B. | Crosson, Kenya M.
Globally carbon nanoparticles are increasingly utilized, yet it is not known if these nanoparticles pose a threat to the environment or human health. This investigation examined 'as-prepared', and acid cleaned carbon nanoparticle physicochemical characteristics (by FTIR, TEM, FESEM, UV-VIS and X-ray microanalysis), and whether these characteristics changed following 2.5-7 yr exposure to pH neutral saline or fresh water. To determine if these aqueous aged nanotubes were cytotoxic, these nanotubes were incubated with human epithelial monolayers and analyzed for cell viability (vital staining) and ultrastructural nanoparticle binding/localization (TEM, FESEM). The presence of Ni and Y catalyst, was less damaging to cells than CNT lattice surface oxidation. Extended fresh water storage of oxidized CNTs did not reduce surface reactive groups, nor lessen cell membrane destruction or cell death. However storing oxidized CNTs in saline or NOM significantly reduced CNT-induced cell membrane damage and increased cell survival to control levels. Oxidized SWCNTs in pH neutral fresh and saline water showed no reduction in surface oxidation with time, yet exposure of these nanotubes to saline and NOM reduced human cell toxicity markedly.
Show more [+] Less [-]