Refine search
Results 21-30 of 3,495
Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons Full text
2022
Vuong, Quang Tran | Son, Ji-Min | Thang, Phan Quang | Ohura, Takeshi | Choi, Sung-Deuk
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are receiving attention because of their high toxicity compared with parent PAHs. However, the experimental data of their physicochemical properties has been limited. This study proposed the gas chromatographic retention time (GC-RT) technique as an effective alternative one to determine octanol-air partition coefficients (KOA) and sub-cooled liquid vapor pressures (PL) for 11 NPAHs, 10 OPAHs, and 19 parent PAHs. The slopes and intercepts of the linear regressions between temperature versus KOA and PL were provided and can be used to estimate KOA and PL for the 40 targeted compounds at any temperature. The internal energies of phase transfer (ΔUOA) and enthalpies of vaporization (ΔHL) for all targeted compounds were also calculated using the GC-RT technique. High-molecular-weight compounds may release or absorb higher heat energy to transform between different phases. NPAHs and OPAHs had a non-ideal solution behavior with activity in octanol (γₒcₜ) in the range of 19–53 and 18–1,078, respectively, which is larger than the unity threshold. A comparison among four groups of PAH derivatives showed that a functional group (nitro-, oxygen-, chloro-, and bromo-) in PAH derivatives increased γₒcₜ for corresponding parent PAHs by tens (mono-group) to hundreds of times (di-group). This study suggests that the GC-RT method is applicable for indirectly measuring the physicochemical properties of various groups of organic compounds.
Show more [+] Less [-]A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology Full text
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Show more [+] Less [-]Effect of polyethylene microplastics and acid rain on the agricultural soil ecosystem in Southern China Full text
2022
Liu, Ziqiang | Liu, Zhenxiu | Wu, Lizhu | Li, Yazheng | Wang, Jing | Wei, Hui | Zhang, Jiaen
The increasing microplastics (MPs) pollution and continuous acid rain coincide in many areas of the world. However, how MPs interact with acid rain is still unclear. Herein, we conducted a microcosm experiment to decipher the combined effect of polyethylene (PE) MPs (1%, 5%, and 10%) and acid rain (pH 4.0) on the agricultural soil ecosystem of Southern China, in which edaphic property, microbial community, enzymatic activity and CO₂ emission were investigated. The results showed that PE MPs significantly decreased soil water retention and nitrate nitrogen content regardless of acid rain. Soil total nitrogen significantly decreased under the co-exposure of 10% PE MPs and acid rain. However, PE MPs did not alter soil microbial biomass, i.e., the content of microbial biomass carbon, total phospholipid fatty acids, with or without acid rain. 10% PE MPs and acid rain treatment significantly increased the activity of catalase and soil CO₂ emission. PE MPs addition did not affect the temperature sensitivity (Q₁₀) of soil CO₂ emission regardless of acid rain. These findings suggest that MPs may interact with acid rain to affect soil ecosystems, thus underscoring the necessity to consider the interaction between MPs and ambient environmental factors when exploring the impact of MPs on the soil biodiversity and function.
Show more [+] Less [-]Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis Full text
2022
Vendl, Catharina | Pottier, Patrice | Taylor, Matthew D. | Bräunig, Jennifer | Gibson, Matthew J. | Hesselson, Daniel | Neely, G Gregory | Lagisz, Malgorzata | Nakagawa, Shinichi
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I² = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
Show more [+] Less [-]Morphological, physiological and behavioral responses of an intertidal snail, Acanthina monodon (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems Full text
2022
Duarte, Cristian | Jahnsen-Guzmán, Nicole | Quijón, Pedro A. | Manríquez, Patricio H. | Lardies, Marco A. | Fernández, Carolina | Reyes, Miguel | Zapata, Javier | García-Huidobro, M Roberto | Lagos, Nelson A.
Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO₂ (500 vs. 1500 ppm) and temperature (15 vs. 10 °C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 °C) but were unaffected by pCO₂ or the interaction between pCO₂ and temperature. Instead, metabolic rates were driven by pCO₂, but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO₂ levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.
Show more [+] Less [-]Polychlorinated biphenyls (PCBs) in soils from typical paddy fields of China: Occurrence, influencing factors and human health risks Full text
2022
Niu, Lili | Mao, Shuduan | Zhou, Jinyi | Zhao, Lu | Zhu, Yuanqiao | Xu, Chao | Sun, Xiaohui | Sun, Jianqiang | Liu, Weiping
The contamination of paddy soils is of great concern since it links to human health via food supply. Limited knowledge is available on PCB residue characteristics and the associated health risks in paddy soils under various environmental conditions. In this study, a soil sampling campaign was conducted in three typical paddy fields, i.e., Sanjiang Plain (SP), Taihu Plain (TP) and Hani Terrace (HT), crossing a transect of 4000 km in China. The concentrations of 29 quantified PCBs varied from 58.6 to 1930 pg/g in paddy soils, with samples at TP showing the highest burden. Tri-CBs were the major homologue group at SP and HT, whereas hexa-CBs at TP. Altitude, temperature, soil organic matter content and soil conductivity well explained the variations in PCB concentrations among sites. The homologue profiles of soil PCBs followed the fractionation theory. In addition, soil conductivity was found to be negatively correlated to low-chlorinated PCBs and positively to high-chlorinated congeners. Furthermore, the toxicities of soil PCBs and the exposure risks through rice intake were estimated. Higher toxicity equivalent quantities and hazard indexes were found at SP than TP and HT, with over one third of the samples displaying health risks. The results of this work highlight the necessity to better understand the occurrence characteristics and the associated health risks of PCBs in soils of rice-growing regions.
Show more [+] Less [-]Effect of carrier gas during pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil Full text
2022
Godlewska, Paulina | Oleszczuk, Patryk
In this study the persistence (based on extractable, Cₜₒₜ) and bioavailability (based on freely dissolved content, Cfᵣₑₑ) of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil was investigated. Biochar produced at 500 or 700 °C from sewage sludge (BC) or sewage sludge and willow (W) mixture (BCW) in an atmosphere of nitrogen (N₂) or carbon dioxide (CO₂) was evaluated. The biochars were applied to the real soil (podzolic loamy sand) at a dose of 2% (w/w). The content of Cₜₒₜ and Cfᵣₑₑ PAHs was monitored for 180 days. The biochar production conditions determined the Cₜₒₜ and Cfᵣₑₑ PAHs in the soil. A change of carrier gas from N₂ to CO₂ caused an increase in Cₜₒₜ PAH losses in the soil from 19 to 75% for the biochar produced from SL and from 49 to 206% for the co-pyrolyzed biochar. As regards Cfᵣₑₑ PAHs, the change from N₂ to CO₂ increased the losses of Cfᵣₑₑ PAHs only for the biochar derived from SL at a temperature of 500 °C (by 21%). In the soil with the other biochars (produced at 700 °C from SL as well as at 500 and 700 °C from SL/W), the Cfᵣₑₑ increased from 17 to 26% compared to the same biochars produced in an atmosphere of N₂.
Show more [+] Less [-]Tissue distribution of phthalates in celery under different cultivation patterns and associated dietary exposure Full text
2022
Zhao, Fang | Ma, Zhihong | Ping, Hua | He, Zhaoying | Li, Bingru | Gao, Yuan | Li, Cheng
To investigate tissue distribution, spatial difference, temperature variation, and potential health risks of PAEs in vegetables, celery was used as a model plant. Celery samples were collected from open fields and greenhouses from two provinces in China over four seasons. Celery tissues were analyzed for 16 PAE compounds by gas chromatography–tandem mass spectrometry. The total content of PAEs was 89.0–1130.3 μg kg⁻¹ dry weight (dw) in stems and 155.0–2730.8 μg kg⁻¹ dw in leaves. Concentrations of PAEs in celeries showed notable spatial differences (P < 0.05), and the levels in samples from open fields were lower than those in samples from plastic greenhouses. In celeries from greenhouses, higher PAE concentrations were observed for plants grown at high temperatures than in plants grown at low temperatures. Discrepancies in tissue distribution indicated different uptake pathways of PAE contaminants. Risk assessments to humans found that both carcinogenic risks and non-carcinogenic risks of PAEs via celery consumption were at an acceptable level. Further research should consider other exposure pathways of PAEs and pay special attention to reducing PAE contents in vegetables.
Show more [+] Less [-]Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure Full text
2022
Wang, Guoying | Kong, Yilin | Yang, Yan | Ma, Ruonan | Li, Liqiong | Li, Guoxue | Yuan, Jing
The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels.
Show more [+] Less [-]Quantifying the contribution rates of sulfonamide antibiotics removal mechanisms in constructed wetlands using multivariate statistical analysis Full text
2022
Zhang, Ling | Yan, Changzhou | Qi, Ran | Yang, Fan
The removal of antibiotics in subsurface flow constructed wetlands is performed through various removal mechanisms, such as adsorption, hydrolysis, microbial degradation and plant uptake. However, the contribution rates of the removal mechanisms in constructed wetlands are still not well studied. This study conducted a series of experiments and used multivariate statistical analysis to determine contribution rates for substrate adsorption, hydrolysis, and microbial degradation. Multiple stepwise regression analysis indicated that specific surface area and salt content were the main factors influencing sulfonamide adsorption, while temperature and pH were the main factors influencing sulfonamide hydrolysis. Variance partitioning analysis showed that the influence of physical-chemical factors was greater than that of nutrients on the microbial community. Partial least squares path analysis showed that the path coefficients of microbial degradation, adsorption and hydrolysis for sulfonamides removal in vertical subsurface flow constructed wetlands were 0.6339, 0.3608 and 0.0351, respectively, while the corresponding path coefficient were 0.5658, 0.4707 and 0.1079 in horizontal subsurface flow constructed wetlands, respectively. This means that microbial degradation contributes the most to the removal of sulfonamides in subsurface flow constructed wetlands. Enhanced microbial degradation may be a powerful measure to improve the removal of sulfonamides. These results will be helpful for understanding the removal mechanism of antibiotics and will provide a definite direction for pertinently improving sulfonamide removal efficiency in constructed wetlands.
Show more [+] Less [-]