Refine search
Results 31-40 of 3,495
Contributions of meteorology to ozone variations: Application of deep learning and the Kolmogorov-Zurbenko filter Full text
2022
Sadeghi, Bavand | Ghahremanloo, Masoud | Mousavinezhad, Seyedali | Lops, Yannic | Pouyaei, Arman | Choi, Yunsoo
From hourly ozone observations obtained from three regions⸻Houston, Dallas, and West Texas⸻we investigated the contributions of meteorology to changes in surface daily maximum 8-h average (MDA8) ozone from 2000 to 2019. We applied a deep convolutional neural network and Shapely additive explanation (SHAP) to examine the complex underlying nonlinearity between variations of surface ozone and meteorological factors. Results of the models showed that between 2000 and 2019, specific humidity (38% and 27%) and temperature (28% and 37%) contributed the most to ozone formation over the Houston and Dallas metropolitan areas, respectively. On the other hand, the results show that solar radiation (50%) strongly impacted ozone variation over West Texas during this time. Using a combination of the Kolmogorov-Zurbenko (KZ) filter and multiple linear regression, we also evaluated the influence of meteorology on ozone and quantified the contributions of meteorological parameters to trends in surface ozone formation. Our findings showed that in Houston and Dallas, meteorology influenced ozone variations to a large extent. The impacts of meteorology on West Texas, however, showed meteorological factors had fewer influences on ozone variabilities from 2000 to 2019. This study showed that SHAP analysis and the KZ approach can investigate the contributions of the meteorological factors on ozone concentrations and help policymakers enact effective ozone mitigation policies.
Show more [+] Less [-]Carbonation treatment of gasification fly ash from municipal solid waste using sodium carbonate and sodium bicarbonate solutions Full text
2022
Qin, Junde | Zhang, Yunhui | Yi, Yaolin | Fang, Mingliang
In recent years, slagging-gasification technology has received increasing attention in treating municipal solid waste (MSW). Compared with conventional incineration, the higher temperature in the slagging-gasification process optimizes its residue composition, and gasification fly ash (GFA) is the only unreused solid residue. Although GFA is a potential civil engineering material, its high content of heavy metals, chlorides, and sulfates hinders its practical use. Moreover, although carbonation has proven to immobilize heavy metals in incineration fly ash, the conventional gas carbonation method cannot remove chlorides and sulfates. In this study, sodium bicarbonate (NaHCO₃) treatment was studied to treat GFA for the first time, and sodium carbonate (Na₂CO₃) was used for comparison. Different concentrations of NaHCO₃ and Na₂CO₃ solutions were used to treat the GFA, and comprehensive tests were conducted on the treated samples. The results indicated that NaHCO₃ treatment was effective in immobilizing Pb, Zn, Cu, and Ni in GFA, while Na₂CO₃ treatment could not effectively immobilize Pb and Zn. Both NaHCO₃ and Na₂CO₃ promoted the removal of chlorides and sulfates in GFA. The wastewater from the NaHCO₃ treatment contained fewer heavy metals compared with those from water washing or Na₂CO₃ treatment, benefitting its treatment or reuse.
Show more [+] Less [-]Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration Full text
2022
Chang, Mengjie | Zhang, Chao | Li, Mingyang | Dong, Junyu | Li, Changchao | Liu, Jian | Verheyen, Julie | Stoks, Robby
Microplastics are sometimes considered not harmful at environmentally relevant concentrations. Yet, such studies were conducted under standard thermal conditions and thereby ignored the impacts of higher mean temperatures (MT), and especially daily temperature fluctuations (DTF) under global warming. Moreover, an evolutionary perspective may further benefit the future risk assessment of microplastics under global warming. Here, we investigated the effects of two generations of exposure to an environmentally relevant concentration of polystyrene microplastics (5 μg L⁻¹) under six thermal conditions (2 MT × 3 DTF) on the life history, physiology, and behaviour of Daphnia magna. To assess the impact of thermal evolution we thereby compared Daphnia populations from high and low latitudes. At the standard ecotoxic thermal conditions (constant 20 °C) microplastics almost had no effect except for a slight reduction of the heartbeat rate. Yet, at the challenging thermal conditions (higher MT and/or DTF), microplastics affected each tested variable and caused an earlier maturation, a higher fecundity and intrinsic growth rate, a decreased heartbeat rate, and an increased swimming speed. These effects may be partly explained by hormesis and/or an adaptive response to stress in Daphnia. Moreover, exposure to microplastics at the higher mean temperature increased the fecundity and intrinsic growth rate of cold-adapted high-latitude Daphnia, but not of the warm-adapted low-latitude Daphnia, suggesting that thermal evolution in high-latitude Daphnia may buffer the effects of microplastics under future warming. Our results highlight the critical importance of DTF and thermal evolution for a more realistic risk assessment of microplastics under global warming.
Show more [+] Less [-]Comprehensive efficiency evaluation of wastewater treatment plants in northeast Qinghai–Tibet Plateau using slack–based data envelopment analysis Full text
2022
Feng, Zhaohui | Liu, Xiaojie | Wang, Lingqing | Wang, Yong | Yang, Jun | Wang, Yazhu | Huan, Yizhong | Liang, Tao | Yu, Qiming Jimmy
Comprehensive efficiency analysis of wastewater treatment plants (WWPTs) in the alpine region with harsh environment and poor techniques as well as managing experience could provide targeted and effective improvement evidences for local wastewater treatment industry and help to improve the water quality of downstream reaches. In this paper, slack–based data envelopment analysis (SBM–DEA) was adopted to assess the operating efficiencies of WWPTs in northeast Qinghai–Tibet Plateau (QTP). Results showed that the average efficiency score for all WWPTs was 0.608, and 32.5% of WWPTs were efficient. Some WWPTs had large improvement potentials in operating costs and pollutant removal rates. Lowering expenditures and promoting facility construction for WWPTs to overcome the climate difficulties and improve management level was necessary according to their improvement potentials. In addition, the relative importance of the quantitative influential factors to efficiencies scores calculated by random forest regression (RFR) indicated that design capacity and temperature were important quantitative factors affecting the performance of WWPTs. Furthermore, geographical location and design capacity also had significant influence on the comprehensive efficiency of WWPTs verified by Kruskal–Wallis test. Our results highlight the importance of facilities upgrading, scientific management for WWPTs. And the relative improvement suggestions on overcoming the high and cold environment should also be considered for the efficient operations of WWTPs as well as the protection the aquatic environment.
Show more [+] Less [-]The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus Full text
2022
Morgado, Rui G. | Pereira, Andreia | Cardoso, Diogo N. | Prodana, Marija | Malheiro, Catarina | Silva, Ana Rita R. | Vinhas, André | Soares, Amadeu M.V.M. | Loureiro, Susana
Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.
Show more [+] Less [-]Short-term effects of cold spells on plasma viscosity: Results from the KORA cohort study in Augsburg, Germany Full text
2022
Ni, Wenli | Schneider, Alexandra | Wolf, Kathrin | Zhang, Siqi | Chen, Kai | Koenig, Wolfgang | Peters, Annette | Breitner, Susanne
As the underlying mechanisms of the adverse effects of cold spells on cardiac events are not well understood, we explored the effects of cold spells on plasma viscosity, a blood parameter linked to cardiovascular disease. This cross-sectional study involved 3622 participants from the KORA S1 Study (1984–1985), performed in Augsburg, Germany. Exposure data was obtained from the Bavarian State Office for the Environment. Cold spells were defined as two or more consecutive days with daily mean temperatures below the 3ʳᵈ, 5ᵗʰ, or 10ᵗʰ percentile of the distribution. The effects of cold spells on plasma viscosity were explored by generalized additive models with distributed lag nonlinear models (DLNM). We estimated cumulative effects at lags 0–1, 0–6, 0–13, 0–20, and 0–27 days separately. Cold spells (mean temperature <3ʳᵈ, <5ᵗʰ or <10ᵗʰ percentile) were significantly associated with an increase in plasma viscosity with a lag of 0–1 days [%change of geometric mean (95% confidence interval): 1.35 (0.06–2.68), 1.35 (0.06–2.68), and 2.49 (0.34–4.69), respectively], and a lag of 0–27 days [18.81 (8.97–29.54), 17.85 (8.29–28.25), and 7.41 (3.35–11.0), respectively]. For the analysis with mean temperature <3ʳᵈ or 10ᵗʰ percentile, we also observed significant associations at lag 0–20 days [8.34 (0.43–16.88), and 4.96 (1.68, 8.35), respectively]. We found that cold spells had significant immediate and longer lagged effects on plasma viscosity. This finding supports the complex interplay of multiple mechanisms of cold on adverse cardiac events and enriches the knowledge about how cold exposure acts on the human body.
Show more [+] Less [-]A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study Full text
2022
Salman, Ali Dawood | Juzsakova, Tatjána | Jalhoom, Moayyed G. | Abdullah, Thamer Adnan | Le, Phuoc-Cuong | Viktor, Sebestyen | Domokos, Endre | Nguyen, X Cuong | La, D Duong | Nadda, Ashok K. | Nguyen, D Duc
The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N₂₃₅) was efficient in extracting Fe(III) from the HCl leachate as HFeC1₄. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0–1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)₃ as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.
Show more [+] Less [-]Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design Full text
2021
Okolie, Jude A. | Nanda, Sonil | Dalai, Ajay K. | Kozinski, Janusz A.
Forest fires significantly affect the wildlife, vegetation, composition and structure of the forests. This study explores the potential of partially burnt wood recovered in the aftermath of a recent Canadian forest fire incident as a feedstock for generating hydrogen-rich syngas through hydrothermal gasification. Partially burnt wood was gasified in hydrothermal conditions to study the influence of process temperature (300–500 °C), residence time (15–45 min), feed concentration (10–20 wt%) and biomass particle size (0.13 mm and 0.8 mm) using the statistical Taguchi method. Maximum hydrogen yield and total gas yield of 5.26 mmol/g and 11.88 mmol/g, respectively were obtained under optimized process conditions at 500 °C in 45 min with 10 wt% feed concentration using biomass particle size of 0.13 mm. The results from the mean of hydrogen yield show that the contribution of each experimental factors was in the order of temperature > feed concentration > residence time > biomass particle size. Other gaseous products obtained at optimum conditions include CO₂ (3.43 mmol/g), CH₄ (3.13 mmol/g) and C₂–C₄ hydrocarbons (0.06 mmol/g).
Show more [+] Less [-]Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus Full text
2021
Cai, Shenghe | Jia, Yunlu | Donde, Oscar Omondi | Wang, Zhi | Zhang, Junqian | Fang, Tao | Xiao, Bangding | Wu, Xingqiang
Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.
Show more [+] Less [-]Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio Full text
2021
Sex determination is a complex process that can be influenced by environment in various taxa. Disturbed environments can affect population sex ratios and thus threaten their viability. Emerging evidences support a role of epigenetic mechanisms, notably DNA methylation, in environmental sex determination (ESD). In this work, using zebrafish as model and a transgenerational experiment comprising 4 successive generations, we report a strength link between the promotor methylation level of three genes in female gonads and population sex ratio. One generation of zebrafish was exposed throughout its lifetime to cadmium (Cd), a non-essential metal, at an environmentally relevant concentration. The subsequent generations were not exposed. At the first and the third generation a subset of individuals was exposed to an elevated temperature, a well-known masculinizing factor in zebrafish. While heat was associated to an increase in the methylation level of cyp19a1a gene and population masculinization, foxl2a/dmrt1 methylation levels appeared to be influenced by Cd and fish density leading to offspring feminization. Ancestral Cd exposure indeed led to a progressive feminization of the population over generations and affected the sex plastic response of zebrafish in response to heat. The effect of Cd on the methylation level of foxl2a was observed until the third generation, supporting potential transgenerational inheritance. Our results support (i) a key role of cyp19a1a methylation in SD in zebrafish in response to environmental cues and (ii) the fact that the environment experienced by parents, namely mothers in the present case, can affect their offspring sex ratio via environment-induced DNA methylation changes in gonads.
Show more [+] Less [-]