Refine search
Results 1-10 of 57
Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment Full text
2019
Beni, Ali Aghababai | Esmaeili, Akbar
A biofilm reactor was designed with flat ceramic substrates to remove Co(II), Ni(II) and Zn(II) from industrial wastewater. The ceramics were made of clay and nano-rubber with high mechanical resistance. The surface of the ceramic substrate was modified with neutral fiber and nano-hydroxyapatite. A uniform and stable biofilm mass of 320 g with 2 mm of thickness was produced on the modified ceramic after 3 d. The micro-organisms were identified in the biofilm by polymerase chain reaction (PCR) method. Functional groups of biofilms were identified with a Fourier transform infrared spectrometer (FT-IR). Experiments were designed by central composite design (CCD) using the responsive surface method (RSM). The biosorption process was optimized at pH = 5.8, temperature = 22 °C, feed flux of heavy metal wastewater = 225 ml, substrate flow = 30 ml, and retention time = 7.825 h. The kinetic data was analyzed by pseudo first-order and pseudo second-order kinetic models. Isotherm models and thermodynamic parameters were applied to describe the biosorption equilibrium data of the metal ions on the biofilm-ceramic. The maximum biosorption efficiency and capacity of heavy metal ions were about 72% and 57.21 mg, respectively.
Show more [+] Less [-]Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions Full text
2019
Bhanja, Soumendra N. | Wang, Junye | Shrestha, Narayan K. | Zhang, Xiaokun
A conversion of the global terrestrial carbon sink to a source is critically dependent on the microbially mediated decomposition of soil organic matter (SOM). We have developed a detailed, process-based, mechanistic model for simulating SOM decomposition and its associated processes, based on Microbial Kinetics and Thermodynamics, called the MKT model. We formulated the sequential oxidation-reduction potential (ORP) and chemical reactions undergoing at the soil-water zone using dual Michaelis-Menten kinetics. Soil environmental variables, as required in the MKT model, are simulated using one of the most widely used watershed-scale models - the soil water assessment tool (SWAT). The MKT model was calibrated and validated using field-scale data of soil temperature, soil moisture, and N₂O emissions from three locations in the province of Saskatchewan, Canada. The model evaluation statistics show good performance of the MKT model for daily soil N₂O simulations. The results show that the proposed MKT model can perform better than the more widely used process-based and SWAT-based models for soil N₂O simulations. This is because the multiple processes of microbial activities and environmental constraints, which govern the availability of substrates to enzymes were explicitly represented. Most importantly, the MKT model represents a step forward from conceptual carbon pools at varying rates.
Show more [+] Less [-]Removal characteristics of a composite active medium for remediation of nitrogen-contaminated groundwater and metagenomic analysis of degrading bacteria Full text
2019
Li, Shuo | Zhang, Yuling | Qian, Hong | Deng, Zhiqun | Wang, Xi | Yin, Siqi
To investigate the removal characteristics of ammonium-nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N), nitrate-nitrogen (NO₃⁻-N), and total nitrogen from groundwater by a degradable composite active medium, kinetics, thermodynamics, and equilibrium adsorption, experiments were performed using scoria and degrading bacteria immobilized on scoria. Removal of NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N was conducted in adsorption experiments using different times, initial concentrations, pH values, and groundwater chemical compositions (Ca²⁺, Mg²⁺, HCO₃⁻, CO₃²⁻, Fe²⁺, Mn²⁺, and SO₄²⁻). The results showed that the removal of nitrogen by the composite active medium was obviously better than that of scoria alone. The removal rates of NH₄⁺-N (C₀ = 5 mg/L), NO₂⁻-N (C₀ = 5 mg/L), and NO₃⁻-N (C₀ = 100 mg/L) by the composite active medium within 1 h were 96.05%, 82.40%, and 83.16%, respectively. The adsorption kinetics were well fitted to a pseudo-second order model, whereas the equilibrium adsorption agreed with the Freundlich model. With changes in the pH, variation in the removal could be attributed to the combined effect of hydrolysis and competitive ion adsorption, and the optimum pH was 7. Different concentration conditions, hardness, alkalinity, anions, and cations showed different promoting and inhibiting effects on the removal of nitrogen. A careful examination of ionic concentrations in adsorption batch experiments suggested that the sorption behavior of nitrogen onto the immobilized medium was mainly controlled by ion exchange. The degrading bacteria on the scoria surface were eluted and analyzed by metagenomic sequencing. There were significant differences in the number of operational taxons, relative abundances, and community diversity among degrading bacteria after adsorption of the three forms of nitrogen. The relative abundance of degrading bacteria was highest after NO₃⁻-N removal, and the diversity was highest after NO₂⁻-N removal. Pseudomonas and Serratia were the dominant genera that could efficiently remove NH₄⁺-N and NO₂⁻-N.
Show more [+] Less [-]Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain) Full text
2019
Blázquez-Pallí, Natàlia | Rosell, Mónica | Varias, Joan | Bosch, Marçal | Soler, Albert | Vicent, Teresa | Marco-Urrea, Ernest
The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
Show more [+] Less [-]Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies Full text
2019
Nawanīta Kaura, | Manpreet Kaur, | Singh, Dhanwinder
Mesoporous nanocomposite of MgFe₂O₄ nanoparticles (NPs) and graphene oxide (GO) was synthesized using facile sonication method. Its potential was tested for the removal of Ni (II) and Pb (II) ions from water. The 2:1 w/w ratio of MgFe₂O₄:GO was optimum for the maximum removal of metal ions. Nanocomposite was characterized employing XRD, FT-IR, VSM, SEM-EDX, XPS, TEM and BET analyses. It possessed higher surface area (63.0 m² g⁻¹) than pristine NPs. Batch experiments were performed to study the effect of process parameters viz. pH, dose, contact time, initial metal ion concentration, co-existing ions and temperature. Statistical parameters were also determined. Langmuir, Temkin and Freundlich models were followed in perfect way. Langmuir model showed the monolayer adsorption of metal ions onto the homogeneous surface of nanocomposite with maximum adsorption capacity of 100.0 mg g⁻¹ and 143.0 mg g⁻¹ for Ni (II) and Pb (II) ions respectively, which was higher than the same for MgFe₂O₄ NPs and GO. Kinetic studies demonstrated that the pseudo-second order model well described the adsorption process. The ΔS° and ΔG° values revealed spontaneous nature of adsorption process. Positive ΔH° values using MgFe₂O₄ NPs and nanocomposite indicated endothermic removal; whereas using GO the removal was exothermic. The observed trend for coexisting ions correlated with hydrated ion radii. Efficiency of the adsorbents was also tested for realistic nickel electroplating industrial effluent. Apart from the higher adsorption potential of nanofabricated composite, its magnetic properties are advantageous in utilizing metal loaded nanocomposite for adsorption-desorption cycles for reuse.
Show more [+] Less [-]Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites Full text
2019
Duman, Osman | Özcan, Ceren | Gürkan Polat, Tülin | Tunç, Sibel
In this study, carbon nanotube-based adsorbents, oxidized multi-walled carbon nanotube (OMWCNT) with non-magnetic property and OMWCNT-Fe₃O₄ and OMWCNT-κ-carrageenan-Fe₃O₄ nanocomposites with magnetic property, having different structural and surface properties were prepared and their adsorptive properties for the removal of toxic diquat dibromide (DQ) herbicide from water by adsorption were determined in detail. For each adsorption system, the effects of initial DQ concentration, contact time and temperature on the adsorption processes were determined. Equilibrium time was found to be 300 min for DQ solutions. OMWCNT showed faster adsorption and higher maximum adsorption capacity value than magnetic adsorbents. With increasing initial herbicide concentration from 5.43 mg.L⁻¹ to 16.3 mg.L⁻¹, the values of initial sorption rate exhibited a decrease from 29.1 mg.g⁻¹.min⁻¹ to 4.28 mg.g⁻¹.min⁻¹ for OMWCNT-DQ system, from 1.21 mg.g⁻¹.min⁻¹ to 0.823 mg.g⁻¹.min⁻¹ for OMWCNT-Fe₃O₄-DQ system and from 0.674 mg.g⁻¹.min⁻¹ to 0.612 mg.g⁻¹.min⁻¹ OMWCNT-κ-carrageenan-Fe₃O₄ system. Maximum adsorption capacity value of OMWCNT was approximately 2.8-fold higher than magnetic OMWCNT-Fe₃O₄ and 5.4-fold higher than magnetic OMWCNT-κ-carrageenan-Fe₃O₄ at 25 °C. Adsorption kinetic and isotherm data obtained for all adsorption systems were well-fitted by pseudo second-order and Langmuir models, respectively. Thermodynamic parameters indicated that the adsorption of DQ onto carbon nanotube-based adsorbents was spontaneous and endothermic process. Furthermore, OMWCNT having the highest herbicide adsorption capacity could be regenerated and reused at least five times. This study showed that carbon nanotube-based adsorbents with magnetic and non-magnetic property were of high adsorption performance for the removal of DQ from water and could be promising adsorbent materials for the efficient removal of herbicides from wastewaters.
Show more [+] Less [-]Oil behavior in sea ice: Changes in chemical composition and resultant effect on sea ice dielectrics Full text
2019
Desmond, Durell S. | Saltymakova, Diana | Neusitzer, Thomas D. | Firoozy, Nariman | Isleifson, Dustin | Barber, David G. | Stern, Gary A.
There has been increasing urgency to develop methods for detecting oil in sea ice owing to the effects of climate change in the Arctic. A multidisciplinary study of crude oil behavior in a sea ice environment was conducted at the University of Manitoba during the winter of 2016. In the experiment, medium-light crude oil was injected underneath young sea ice in a mesocosm. The physical and thermodynamic properties of the oil-infiltrated sea ice were monitored over a three-week time span, with concomitant analysis of the oil composition using analytical instrumentation. A resonant perturbation technique was used to measure the oil dielectric properties, and the contaminated sea ice dielectric properties were modeled using a mixture model approach. Results showed that the interactions between the oil and sea ice altered their physical and thermodynamic properties. These changes led to an overall decrease in sea ice dielectrics, potentially detectable by remote sensing systems.
Show more [+] Less [-]Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI) Full text
2019
Laysandra, Livy | Ondang, Immanuel Joseph | Ju, Yi-Hsu | Ariandini, Benedikta Hervina | Mariska, Agatha | Soetaredjo, Felycia Edi | Putro, Jindrayani Nyoo | Santoso, Shella Permatasari | Darsono, Farida Lanawati | Ismadji, Suryadi
Robust and simple composite films for the removal of methyl orange (MO) and Cr(VI) have been prepared by combining chitosan, saponin, and bentonite at a specific ratio. There are several composite films (chitosan-saponin-bentonite (CSB)) prepared; among them, the composite films CSB₂:₃ and CSB₁:₁ have the highest removal efficiency toward MO and Cr(VI) where the maximum removal is 70.4% (pH 4.80) and 92.3% (pH 5.30), respectively. It was found that different types of adsorbate have different thermodynamic properties of the adsorption process; the adsorption of MO onto CSB₂:₃, chitosan, and acid-activated bentonite (AAB) proceeded endothermically, while the adsorption of Cr(VI) onto CSB₁:₁, chitosan, and AAB proceeded exothermically. The parameters of the adsorption were modeled by using isotherm and kinetic equations. The models of Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth were used for fitting the adsorption isotherm data at a temperature of 30, 45, and 60 °C; all of the isotherm models could represent the data well. The result indicates that CSB₂:₃ has the highest adsorption capacity toward MO with qₘ of 360.90 mg g⁻¹ at 60 °C; meanwhile, CSB₁:₁ has the highest adsorption capacity toward Cr(VI) with qₘ 641.99 mg g⁻¹ at 30 °C. The pseudo-second-order model could represent the adsorption kinetics data better than the pseudo-first-order equation. The adsorption mechanism was proposed, and the thermodynamic properties of the adsorption were also studied.
Show more [+] Less [-]Adsorptive Removal of Aqueous Phase Copper (Cu2+) and Nickel (Ni2+) Metal Ions by Synthesized Biochar–Biopolymeric Hybrid Adsorbents and Process Optimization by Response Surface Methodology (RSM) Full text
2019
Biswas, Subrata | Meikap, Bhim Charan | Sen, Tushar Kanti
This research work is focused on the synthesis, characterization, and application of cost-effective biochar–biopolymeric hybrid adsorbents from waste agricultural biomass and sodium alginate. The adsorbents were characterized by BET (Brunauer–Emmett–Teller), FTIR (Fourier transform infrared), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy), and bulk density measurement. The performance of the synthesized hybrid adsorbents has been tested for the removal of aqueous phase Ni²⁺ and Cu²⁺ metal ions at a concentration range of 25 to 100 mg/L, adsorbent dose of 1–3 g/L, and system temperature of 298–308 K, respectively. The effect of various physicochemical process parameters such as solution pH, adsorbent dose, initial metal ion concentration, temperature, and presence of salts on metal ion adsorption has been studied here, and experimental process parameters are being optimized by response surface methodology (RSM). The model was fitted well with the experimental data. Various kinetic models, namely, pseudo-first-order, pseudo-second-order, and Weber–Morris, have been fitted with batch experimental data, and the mechanism of adsorption has been identified. The maximum Langmuir monolayer adsorption capacity for Cu²⁺ and Ni²⁺ were 112 and 156 mg/g, respectively, which are comparative to other published adsorbent’s capacity data under similar experimental conditions. Thermodynamic parameter studies showed that the system was endothermic and spontaneous in nature.
Show more [+] Less [-]Nobel Materials (ZnO Nanoparticles and ZnO Nanoparticles Supported on a Zeolite) for the Removal of Tartrazine from Aqueous Solutions Full text
2019
Alcantara-Cobos, A. | Solache-Rios, M. | Gutiérrez-Segura, E.
Two materials (ZnO nanoparticles (nanZnO) and a composite (Ze-nanZnO)) were prepared; the composite was prepared by chemical precipitation on a natural zeolite. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy (UV-Vis), and Branauer-Emmett-Teller (BET) surface area. These materials were evaluated for the removal of tartrazine; this dye was used because it is considered a dangerous contaminant. All experiments were done in batch process. The effect of different parameters such as the contact time, the initial dye concentration, and pH, in addition to the thermodynamic parameters, were studied in order to determine the best experimental conditions. The nanZnO shows a higher adsorption capacity than the Ze-nanZnO composite; however, the separation of the phases was difficult when nanoparticles were used. According to the kinetic data, the mechanism for the nanZnO is physisorption and for the Ze-nanZnO composite is chemisorption. The results show that this is a useful technique for the removal of this dye.
Show more [+] Less [-]