Refine search
Results 1-10 of 70
Occurrence of anthropogenic and naturally-produced organohalogenated compounds in tissues of Black Sea harbour porpoises Full text
2010
Weijs, Liesbeth | Das, Krishna | Neels, Hugo | Blust, Ronny | Covaci, Adrian
peer reviewed | Harbour porpoises are one of the three cetacean species inhabiting the Black Sea. This is the first study to report on polybrominated diphenyl ethers (PBDEs) and naturally-produced compounds, methoxylated PBDEs (MeO-PBDEs) and polybrominated hexahydroxanthene derivatives (PBHDs), in tissues (kidney, brain, blubber, liver, muscle) of male harbour porpoises (11 adults, 9 juveniles) from the Black Sea. Lipid-normalized concentrations decreased from muscle > blubber > liver > kidney > brain for the sum of polychlorinated biphenyls (PCBs) and for the sum of PBDEs. Among the naturally-produced compounds, levels of PBHDs were higher than of MeO-PBDEs, with tri-BHD and 6-MeO-BDE 47 being the dominant compounds for both groups, respectively. Concentrations of naturally-produced compounds decreased from blubber to brain, similarly to the sum of DDT and metabolites (DDXs). Concentrations of DDXs were highest, followed by PCBs, HCB, PBHDs, PBDEs and MeO-PBDEs. Levels of PCBs and PBDEs in blubber were lower than concentrations reported for harbour porpoises from the North Sea, while concentrations of DDXs were higher.
Show more [+] Less [-]Tissue distribution of phthalates in celery under different cultivation patterns and associated dietary exposure Full text
2022
Zhao, Fang | Ma, Zhihong | Ping, Hua | He, Zhaoying | Li, Bingru | Gao, Yuan | Li, Cheng
To investigate tissue distribution, spatial difference, temperature variation, and potential health risks of PAEs in vegetables, celery was used as a model plant. Celery samples were collected from open fields and greenhouses from two provinces in China over four seasons. Celery tissues were analyzed for 16 PAE compounds by gas chromatography–tandem mass spectrometry. The total content of PAEs was 89.0–1130.3 μg kg⁻¹ dry weight (dw) in stems and 155.0–2730.8 μg kg⁻¹ dw in leaves. Concentrations of PAEs in celeries showed notable spatial differences (P < 0.05), and the levels in samples from open fields were lower than those in samples from plastic greenhouses. In celeries from greenhouses, higher PAE concentrations were observed for plants grown at high temperatures than in plants grown at low temperatures. Discrepancies in tissue distribution indicated different uptake pathways of PAE contaminants. Risk assessments to humans found that both carcinogenic risks and non-carcinogenic risks of PAEs via celery consumption were at an acceptable level. Further research should consider other exposure pathways of PAEs and pay special attention to reducing PAE contents in vegetables.
Show more [+] Less [-]Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells Full text
2021
Ding, Yunfei | Zhang, Ruiqing | Li, Boqing | Du, Yunqiu | Li, Jing | Tong, Xiaohan | Wu, Yulong | Ji, Xiaofei | Zhang, Ying
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
Show more [+] Less [-]Comparative toxicokinetics and tissue distribution of prothioconazole and prothioconazole-desthio in Chinese lizards (Eremias argus) and transcriptional responses of metabolic-related genes Full text
2019
Xie, Yun | Li, Leon Yu Zheng | Hao, Weiyu | Chang, Jing | Xu, Peng | Guo, Baoyuan | Li, Jianzhong | Wang, Huili
Prothioconazole (PTC) is a widely used triazolinthione fungicide with low toxicity and short residual period. However, its desulfurization metabolite, prothioconazole-desthio (PTC-d), is more persistent and has higher toxicity in terrestrial animals. In this study, the toxicokinetics (TK) and tissue distribution of PTC and PTC-d in Chinese lizards (Eremias argus) were measured following single oral dose (100 mg kg⁻¹ body weight) treatments. TK parameters indicated that PTC was more rapidly absorbed than PTC-d, as indicated by its shorter time to reach peak concentrations in most tissues. Furthermore, the relative bioavailability of PTC in lizards was lower than that of PTC-d. Compared with PTC, PTC-d preferentially accumulated in lizards, as reflected by longer half-life of PTC-d. During the distribution process, PTC-d generated in vivo was transported from other tissues and was deposited in the skin and tail, where PTC-d may be excreted by exuviation or tail detachment. Preferential enrichment of S-enantiomer of both PTC and PTC-d were observed in all tissues. Hepatic cytochrome P450 gene expression measurement revealed that cyp1a5 and cyp3a28 exhibited the strongest responses in both treatment groups. In addition, the opposite responses of cyp2k4 in different treatment groups may indicate that this enzyme caused differences in the rates of metabolism of the two chemicals. This study compared the TK profile of PTC and its desulfurization metabolite PTC-d in lizards and demonstrated that the desulfurization of PTC could increase its ecological risk due to the higher bioavailability and persistence of PTC-d.
Show more [+] Less [-]Enantioselective toxic effects of cyproconazole enantiomers against Rana nigromaculata Full text
2018
Zhang, Wenjun | Cheng, Cheng | Chen, Li | Deng, Yue | Zhang, Luyao | Li, Yao | Qin, Yinan | Diao, Jinling | Zhou, Zhiqiang
The environmental contaminant, especially pesticides, threatened the amphibian population. In this assay, the enantioselective behavior of cyproconazole on Rana nigromaculata was studied. We found LC50 (lethal concentration causing 50% mortality) of 4-enantiomers was nearly twice as 3-enantiomers in 96 h acute toxicity test. Besides, the significant considerable variation of oxidative stress and LDH (lactic dehydrogenase) induced by the four enantiomers indicated that cyproconazole could enantioselectively affect enzymes in tadpoles. Bioaccumulation experiments showed the order of cyproconazole in the tadpoles was 4-enantiomers>3- enantiomers>2- enantiomers>1- enantiomers during the exposure for 28d. In tissue distribution test, cyproconazole was formed and accumulated in order of 4-enantiomers>2-enantiomers>3- enantiomers>1- enantiomers, except that in the gut. During the elimination experiment, cyproconazole was rapidly eliminated by 95% within the only 24 h. These results suggested that the influence of enantioselective behavior should consider when assessing ecological risk of chiral pesticides to amphibians.
Show more [+] Less [-]Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio) Full text
2017
Wang, Guowei | Shi, Huanhuan | Du, Zhongkun | Chen, Hanyan | Peng, Jianbiao | Gao, Shixiang
Although organophosphate esters (OPEs) have been detected with growing frequency in water ecosystems, the underlying accumulation mechanisms of these compounds in fish are still unknown. Here, we investigated the tissue-specific accumulation and depuration of seven OPEs in adult zebrafish at three levels (0, 1/150 LC50 (environmentally relevant level), and 1/30 LC50 per OPE congener) in laboratory after 19 days exposure and 3 days depuration. The bioaccumulation of OPEs varied among tissues. Muscle contained the lowest level of OPEs and liver had the highest level of two (TPP and TCEP) of the seven OPEs at steady state. The high levels and slow depuration rates of TDCIPP, TPHP, and TCP observed in roe indicated that the accumulated OPEs were potentially stored in roe and transferred to the next generation. After examination of the major metabolites (organophosphate diesters) in selected tissues, a physiologically based toxicokinetic (PBTK) model used in fish was adopted to explore the key factors affecting the bioaccumulation of OPEs in zebrafish. Biotransformation of OPEs with polychlorinated alkyl moieties (i.e. TDCIPP) and aryl moieties (i.e. TPHP and TCP) has more significant impacts on the accumulation than those of OPEs with alkyl or short chain chlorinated alkyl moieties. Furthermore, the partition process between tissues and blood was also investigated, and was demonstrated to be the dominant process for OPEs accumulation in zebrafish. This study provides critical information on the bioaccumulation, tissue distribution, and metabolization of OPEs in relation with OPE structures in fish, as well as the underlying bioaccumulation mechanisms/pathways of OPEs in aquatic life.
Show more [+] Less [-]Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake Full text
2017
Xie, Zhengxin | Lü, Guanghua | Yan, Zhenhua | Liu, Jianchao | Wang, Peifang | Wang, Yonghua
Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19–2008 L/kg) and biota−sediment accumulation factors (median BSAFs: 0.0010–0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake.
Show more [+] Less [-]Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls Full text
2012
Gebbink, Wouter A. | Letcher, Robert J.
The comparative accumulation of C₄–C₁₅ perfluorinated sulfonates (PFSAs) and carboxylates (PFCAs), and several precursors (e.g., perfluorooctane sulfonamide, N-methyl-FOSA, and fluorotelomer unsaturated acids and alcohols) was examined in tissues (liver, brain, muscle, and adipose), plasma/red blood cells (RBCs) and whole egg clutches (yolk and albumen) of female herring gulls collected in 2010 from Chantry Island, Lake Huron of the Laurentian Great Lakes. Highest mean ∑PFSA concentrations were in yolk, followed by adipose, liver, plasma, muscle, RBCs, and brain. Highest mean ∑PFCA concentrations were in yolk, followed by brain, plasma, liver, RBC, adipose and muscle. PFOS accounted for >88% of ∑PFSA in all samples; the liver, plasma/RBCs, muscle and adipose PFCA patterns were dominated by C₈–C₁₁ PFCAs, whereas C₁₀–C₁₅ PFCAs in brain and yolk. Among PFSAs and PFCAs there is tissue-specific accumulation, which could be due to a number of pharmacokinetic processes.
Show more [+] Less [-]Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France) Full text
2011
Labadie, Pierre | Chevreuil, Marc
This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C₄–C₁₀ sulfonates and C₅–C₁₄ carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0±3.0ngL⁻¹ in water and 8.4±0.5ngg⁻¹ in sediment. They were in the range 43.1–4997.2ngg⁻¹ in fish, in which PFC tissue distribution followed the order plasma>liver>gills>gonads>muscle. Sediment–water distribution coefficients (logKd) and bioaccumulation factors (logBAF) were in the range 0.8–4.3 and 0.9–6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota–sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. logBSAF ranged between −1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids.
Show more [+] Less [-]Tissue distribution of Dechlorane Plus and its dechlorinated analogs in contaminated fish: High affinity to the brain for anti-DP Full text
2011
Zhang, Ying | Wu, Jiang-Ping | Luo, Xiao-Jun | Wang, Jing | Chen, She-Jun | Mai, Bi-Xian
Information on tissue distribution of Dechlorane Plus (DP) and its dechlorinated analogs in wildlife is scarce. DP isomers and two dechlorinated compounds, anti-Cl₁₁-DP and anti-Cl₁₀-DP, were examined in the muscle, liver, and brain tissues of two bottom fish species collected from an electronic waste recycling site, South China. The median levels of syn-, anti-, and anti-Cl₁₁-DP isomers in the tissues ranged 0.18–39.1, 0.22–52.9, and 0.01–5.63 ng/g wet wt, respectively. Anti-Cl₁₀-DP was only detected in one muscle sample of mud carp (0.01 ng/g wet wt), although it was consistently detected in the sediments (0.42–0.83 ng/g dry wt). Preferential distribution in liver relative to muscle was observed for syn-DP and anti-Cl₁₁-DP. However, a high persistent retention in the brain compared to the liver was observed for anti-DP, suggesting that this isomer can across the blood–brain barrier of fish, and may cause adverse effects to the nervous system in the exposed biota.
Show more [+] Less [-]