Refine search
Results 1-10 of 14
Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox
2022
Ma, Ding | Wang, Jin | Li, Hao | Che, Jian | Yue, Zhengbo
In recent years, Feammox has made it possible to remove NH₄⁺-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH₄⁺-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH₄⁺-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH₄⁺-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0–30 cm) of Lim-UAF, while 60.2% of NH₄⁺-N was removed in the middle layer (30–60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60–90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)₃) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH₄⁺-N, which has excellent application prospects in domestic sewage treatment.
Show more [+] Less [-]Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology
2022
Li, Xiaona | Yao, Shi | Bolan, Nanthi | Wang, Zhenyu | Jiang, Xin | Song, Yang
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
Show more [+] Less [-]Historical trends in atmospheric metal(loid) contamination in North China over the past half-millennium reconstructed from subalpine lake sediment
2022
Liang, Mengyao | Liu, Enfeng | Wang, Xiaoyu | Zhang, Qinghui | Xu, Jinling | Ji, Ming | Zhang, Enlou
Trace metal (loid) contamination in the atmosphere is widely monitored, but there is a gap in understanding its long-term patterns, especially in North China, which is currently a global contamination hotspot mainly caused by heavy industry emissions and coal combustion. Herein, historical trends of atmospheric As, Cd, Cr, Cu, Hg, Ni, Pb and Zn contamination in North China over the past ∼500 years are comparatively studied with sediment cores from two subalpine lakes (Gonghai and Muhai). Arsenic, Pb, Cd and Hg were main pollutants according to Pb isotopes and enrichment factors. Mercury contamination has increased continuously since the late 1800s and increasing As, Pb and Cd contamination started in the 1950s in Gonghai. In contrast, the contamination in Muhai lagged two decades for As, Cd and Pb and a half-century for Hg behind that in Gonghai, although the trends were similar. This contamination lag was attributed to the low sensitivity of Muhai sediment to early weak atmospheric metal contamination under 2.1-fold higher detrital sedimentation. As, Pb and Cd contamination has intensified since the 1980s, and the metals showed similar sedimentary fluxes in the cores. However, sedimentary fluxes of Hg contamination were 3.4-fold higher in Gonghai than in Muhai due to combination with organic matter. No obvious Cr, Cu and Ni contamination in the cores was mainly because of the low atmospheric deposition from anthropogenic sources relative to detrital input, although some of their atmospheric emissions were higher than those of As, Cd and Hg. Atmospheric As, Pb and Cd contamination was mainly from domestic sources of coal combustion and nonferrous smelting. Mercury contamination was mainly from global and Asian sources in the first half of the 20th century, and domestic emissions gradually dominated Hg contamination after the mid-1900s.
Show more [+] Less [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
Show more [+] Less [-]Monitoring air quality can help for lakes excessive proliferation of phytoplankton control
2021
Zhang, Chengxiang | Pei, Hongcui | Liu, Cunqi | Wang, Wei | Lei, Guangchun
Previous studies assessing excessive proliferation of phytoplankton (EPP) in lakes are generally based on single investigation and focused on limited environmental factors; meanwhile, less attention has been paid to lakes susceptibility to EPP. Here, we identify the priority of lakes for EPP control in a basin by assessing EPP in multiple lakes and identify the key factors related to lakes’ vulnerability to EPP. Field measurements, as well as multi-source survey data acquisition were conducted for 63 shallow lakes in the middle-lower Yangtze River basin. Resource-use efficiency by phytoplankton (RUE) was then used to represent lake susceptibility to EPP. Generalized linear models were used to assess the relative importance of environmental factors for RUE. We found that most lakes (76.19 %) were not suitable for recreation, due to health concern attributed to irritative or allergenic risk caused by EPP. Phosphorus was the primary limiting nutrient for EPP (74.60 % of lakes) which should be limited to < 0.09 mg/L. The linear model that included latitude, particulate matter 10, and precipitation explained 27.60 % of the variation of RUETP among lakes. In contrast, the linear model that included ozone, Secchi depth, and wind speed explained 19.41 % of the variation of RUETN among lakes. The key factor related to RUETP and RUETN was particulate matter 10 and ozone, respectively, both of which potentially increase RUE or reflect it. Our results suggest that integrating multiple survey datasets is critical for lakes EPP assessment in a basin, while lakes impacted by air pollution are a high priority for EPP control.
Show more [+] Less [-]Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water
2021
Xu, Sijia | Jiang, Yunhan | Liu, Ying | Zhang, Jian
Antibiotics can stimulate the growth of model cyanobacterial species under pure culture conditions, but their influence on cyanobacterial blooms in natural aquatic ecosystems remains unclear. In this study, three commonly detected antibiotics (sulfamethoxazole, tetracycline, and ciprofloxacin) and their ternary mixture were proved to selectively stimulate (p < 0.05) the growth and photosynthetic activity of cyanobacteria in an aquatic microcosm at an environmentally relevant exposure dose of 300 ng/L under both oligotrophic and eutrophic conditions. Under the eutrophic condition, cyanobacteria reached a bloom density of 1.61 × 10⁶ cells/mL in 15 days without antibiotics, while the cyanobacteria exposed to tetracycline, sulfamethoxazole, ciprofloxacin, and their ternary mixture exceeded this bloom density within only 10, 8, 7, and 6 days, respectively. Principal coordinate analysis indicated that the antibiotic contaminants accelerated the prokaryotic community succession towards the formation of a cyanobacterial bloom by promoting the dominance of Microcystis, Synechococcus, and Oscillatoria under the eutrophic condition. After 15 days of culture, the antibiotic exposure increased the density of cyanobacteria by 1.38–2.31-fold and 2.28–3.94-fold under eutrophic and oligotrophic conditions, respectively. Antibiotic exposure generated higher stimulatory effects on cyanobacterial growth under the oligotrophic condition, but the antibiotic(s)-treated cyanobacteria did not form a bloom due to nutrient limitation. Redundancy analysis indicated that the three target antibiotics and their ternary mixture affected the prokaryotic community structure in a similar manner, while tetracycline showed some differences compared to sulfamethoxazole, ciprofloxacin, and the ternary antibiotic mixture with regard to the regulation of the eukaryotic community structure. This study demonstrates that antibiotic contaminants accelerate the formation of cyanobacterial blooms in eutrophic lake water and provides insights into the ecological effects of antibiotics on aquatic microbial communities.
Show more [+] Less [-]Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model
2020
He, Jianwen | Zheng, Weijiang | Tao, Chengyuan | Guo, Huiduo | Xue, Yongqiang | Zhao, Ruqian | Yao, Wen
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring’s intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Show more [+] Less [-]Response of spatio-temporal changes in sediment phosphorus fractions to vegetation restoration in the degraded river-lake ecotone
2022
Yan, Zhiwei | Wu, Ling | Lv, Tian | Tong, Chao | Gao, Zhongyao | Liu, Yuan | Xing, Bin | Chao, Chuanxin | Li, Yang | Wang, Ligong | Liu, Chunhua | Yu, Dan
Phosphorus (P) is an essential element in the ecosystem and the cause of the eutrophication of rivers and lakes. The river-lake ecotone is the ecological buffer zone between rivers and lakes, which can transfer energy and material between terrestrial and aquatic ecosystems. Vegetation restoration of degraded river-lake ecotone can improve the interception capacity of P pollution. However, the effects of different vegetation restoration types on sediment P cycling and its mechanism remain unclear. Therefore, we seasonally measured the P fractions and physicochemical properties of sediments from different restored vegetation (three native species and one invasive species). The results found that vegetation restoration significantly increased the sediment total P and bioavailable P content, which increased the sediment tolerance to P pollution in river-lake ecotone. In addition, the total P content in sediments was highest in summer and autumn, but lower in spring and winter. The total P and bioavailable P contents in surface sediments were the highest. They decreased with increasing depth, suggesting that sediment P assimilation by vegetation restoration and the resulting litter leads to redistribution of P in different seasons and sediment depths. Microbial biomass-P (MBP), total nitrogen (TN), and sediment organic matter (SOM) are the main factors affecting the change of sediment phosphorus fractions. All four plants’ maximum biomass and P storage appeared in the autumn. Although the biomass and P storage of the invasive species Alternanthera philoxeroides were lower, the higher bioavailable P content and MBP values of the surface sediments indicated the utilization efficiency of sediment resources. These results suggest that vegetation restoration affects the distribution and circulation of P in river and lake ecosystems, which further enhances the ecological function of the river-lake ecotone and prevents the eutrophication and erosion of water and sediment in the river-lake ecotone.
Show more [+] Less [-]Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species
2022
Paolacci, Simona | Stejskal, Vlastimil | Toner, Damien | Jansen, Marcel A.K.
The aquaculture industry is considered a key sector for the supply of high quality, nutritious food. However, growth of the aquaculture sector has been slow, particularly in Europe, and this is amongst others linked to concerns about environmental impacts of this industry. Integrated Multitrophic Aquaculture (IMTA) has been identified as an important technology to sustainably improve freshwater fish production. In IMTA, economically valuable extractive species feed on waste produced by other species, remediating wastewater, and minimising the environmental impact of aquaculture. This study presents quantitative information on the nitrogen and phosphorus removal efficiency of a duckweed-based, pilot, semi-commercial IMTA system. Duckweed species are free-floating freshwater species belonging to the family of Lemnaceae. The aim of this study was to test the potential of duckweed-based IMTA under realistic environmental conditions. Three different approaches were used to assess remediation capacity; 1) assessment of water quality pre and post treatment with duckweed showed that the system can remove 0.78 and 0.38 T y⁻¹ of Total Nitrogen (TN) and Total Phosphorus (TP), respectively 2) based on nitrogen and phosphorus content of newly grown duckweed biomass, it was shown that 1.71 and 0.22 T y⁻¹ of TN and TP can be removed, respectively 3) extrapolation based on laboratory established nitrogen and phosphorus uptake rates determined that 0.88 and 0.08 T y⁻¹ of TN and TP can be removed by the system. There is substantive agreement between the three assessments, and the study confirms that duckweed can maintain good quality water in an IMTA system, while yielding high protein content (21.84 ± 2.45%) biomass. The quantitative data on nitrogen and phosphorus removal inform the design of further IMTA systems, and especially create a scientific basis to determine the balance between aquaculture and extractive species.
Show more [+] Less [-]Quantification of the sorption of organic pollutants to minerals via an improved mathematical model accounting for associations between minerals and soil organic matter
2021
Cheng, Jie | Ye, Qi | Lu, Zhijiang | Zhang, Jiangjiang | Zeng, Lingzao | Parikh, Sanjai J. | Ma, Wanzhu | Tang, Caixian | Xu, Jianming | He, Yan
The retention of organic pollutant (OP) in soils is commonly attributed to interactions with soil organic matter (SOM), perhaps overlooking substantial involvement of soil minerals. In this study, 36 soil samples with far-ranging ratios of clay to organic carbon were used to examine contribution of minerals on soil sorption of pentachlorophenol (PCP) and phenanthrene (PHE). Sorption isotherms (n = 216) were fit individually using three typical sorption models, with the most fitted Kd values screened out for quantification of the net mineral contribution to total sorption via development of mathematical model accounting for associations between minerals and SOM. Two mineral-relevant parameters [adsorption distribution coefficient (Kmin) and mineral contribution index (MCI)] were simultaneously defined. Previously reported soil sorption data of PCP, PHE and butachlor (13, 12 and 46, respectively) were also extracted and included to improve the credibility of mathematic model. The average MCI values were calculated as 0.421, 0.405 and 0.512 in PCP, PHE and butachlor treated soils, respectively, very close to or even over than the minerals dominant critical value (0.5). This suggested the significant, or even predominant, contribution of minerals – as compared to SOM. Significant dependence of MCI with four conventional parameters of soil property further offered the possibility to roughly evaluate mineral contributions based on estimated threshold values of soil property parameters (especially TOC). This study provides an accessible approach for predicting the contribution of minerals in soil OP retention, especially highlighting their predominant roles vs. SOM in regulating OP removal in most of subsurface soil or contaminated brownfields where organic carbon content of soil was very low, that was not like what previously believed.
Show more [+] Less [-]