Refine search
Results 1-10 of 18
Biochemical and Physiochemical Assessment of Air Pollution Tolerance Index of Selected Plant Species at Ikpoba Okha Gas Flaring Site, Edo State, Nigeria
2021
Akande, Anthony | Dada, Esther | Olusola, Johnson | Adeyemi, Moyosola
The Air Pollution Tolerance index (APTI) of six plants located within Ikpoba Okha gas flaring site in Oredo Local Government Area of Edo State, Nigeria during wet and dry seasons were assessed. Plant samples for this research work were randomly collected from the vicinity of the flaring site. Six (6) sample of each plant was used for laboratory analysis. The plant parameters assessed include relative water content (RWC), the ascorbic acid content (AAC), total leaf chlorophyll (TLC) and pH extract of the leaves and were used to compute the Air pollution tolerance indices (APTI). Based on the analyzed result, the RWC in Drypetes leonensis, Ficus exasperata Vahl, Chromolaena odorata (Linn) and Gmelina arborea Roxb. ex Smith species in dry season were higher than those in wet season. Icacina tricantha showed a relatively high level of acidity when compared to others. A. boonei De Wild has the highest ascorbic acid content in the leaves in both seasons. The highest level of chlorophyll contents was recorded in the dry season with Drypetes leonensis having the highest, followed by Icacina trichantha. There was no statistically significant difference in pH and total chlorophyll contents between samples collected in wet and dry season; however, there were significant difference observed in ascorbic acid and RWC in both seasons. APTI in wet and dry season showed a statistically significant difference. This study recommends planting of tolerant species that can acts as bio-indicators especially in gas flaring stations in Nigeria.
Show more [+] Less [-]Copper accumulation in five weed species commonly found in the understory vegetation of Mediterranean vineyards
2023
Mattiello, Alessandro | Novello, Nicola | Cornu, Jean-Yves | Babst-Kostecka, Alicja | Pošćić, Filip | Università degli Studi di Udine - University of Udine [Italie] | Central Queensland University (CQU) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | University of Arizona
International audience | Copper (Cu) concentration in agricultural soils often exceeds toxicological limits due to application of Cu-based fungicides. The potential of weeds for their use as functional cover plants in vineyard management and phytoremediation practices is little explored. We identified five weed species widely present in vineyards and assessed their Cu accumulation from eleven Mediterranean vineyards (soil Cu: 60-327 mu g g(-1)) and two adjacent control sites (soil Cu: 15-30 mu g g(-1)). Soils and plants were characterized by their physico-chemical properties and nutrient content. We applied multivariate techniques to analyze relationships between soil properties and leaf nutrient composition. Copper tolerance and accumulation traits were further tested in hydroponics using a series of CuSO4 concentrations (0.1-16 mu M).Under field conditions, the highest Cu concentration in both roots and leaves were found in Lolium perenne (221 and 461 mu g g(-1), respectively), followed by Plantago lanceolata, Rumex obtusifolius and Taraxacum officinale (>100 mu g g(-1) Cu in leaves). Only one species, Trifolium repens, did not accumulate remarkable Cu concentrations. Overall, and as revealed by the multivariate analyses, leaf Cu concentration was driven by soil Cu content, soil texture, organic matter, nitrogen, and Cu uptake into roots. However, functional regression analysis and controlled experiments suggested that Cu might be additionally absorbed from the deposits on the leaf surface related to the Cu-fungicide treatments and soil dust. Our study highlights the importance of intra-specific variability in Cu accumulation among weed species in Cu-contaminated agricultural soils. Further validation of these findings under controlled conditions could provide essential insights for optimizing management and remediation strategies.
Show more [+] Less [-]Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations
2018
Dao, Thanh-Son | Vo, Thi-My-Chi | Wiegand, Claudia | Bui, Ba-Trung | Dinh, Khuong V | Ho Chi Minh City University of Technology [Vietnam National University, HCM] (HCMUT) ; Vietnam National University, Ho Chi Minh City / Đại học Quốc gia TP. Hồ Chí Minh (VNU-HCM) | Duy Tan University (DTU) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institute for Environment and Resources ; Vietnam National University, Ho Chi Minh City / Đại học Quốc gia TP. Hồ Chí Minh (VNU-HCM) | Nha Trang University = Truong Dai hoc Nha Trang (NTU) | Danmarks Tekniske Universitet = Technical University of Denmark (DTU) | 106-NN.04-2014.69, National Foundation for Science and Technology Development
International audience | Climate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L microcystin continuously for three generations. After each generation, each treatment was spit into two one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences.
Show more [+] Less [-]Dynamics of particle retention and physiology in Euonymus japonicus Thunb. var. aurea-marginatus Hort. with severe exhaust exposure under continuous drought
2021
Lin, Xintao | Shu, Da | Zhang, Jing | Chen, Jian | Zhou, Yuanhong | Chen, Chuwen
Frequent drought events and particulate matter pollution from vehicular exhaust seriously affect urban plant growth and provisioning of ecological services. Yet, how plants respond physiologically and morphologically to these two combined stressors remains unknown. Here, we assessed particle retention dynamics and plant morphology and physiology of Euonymus japonicus Thunb. var. aurea-marginatus Hort. under continuous drought with severe exhaust exposure. Our results showed that continuous drought insignificantly lowered particle retention in each of three size fractions by 1.02 μg·cm⁻² on average in the first 28 days, but significantly lowered total particle retention by 35.75 μg·cm⁻² on the 35th day. We observed evident changes in morphology, leaf mass per area (LMA), pigments, gas exchange in all stressed plants. Compared with single stress, combined drought and pollution caused earlier yellowing and shedding of old leaves, significantly lowered LMA by 1.21 mg·cm⁻², caused a greater decline in pigments and net photosynthetic rate (Pₙ). Large particles may mainly explain pigment reduction, lower weekly LMA increases, and stomatal restriction, while coarse particles may be the main drivers of the decline in Pₙ. Continuous drought mediated the influence of all three particle sizes on some parameters, such as weakening the impact of total particles on LMA, strengthening the impact of fine particles on photosynthesis. Our findings suggest that drought accelerates the physiological responses of plants to exhaust pollution. Under controlled severe exhaust pollution conditions, the optimal time to maintain high particle retention during continuous drought without decline in physiological conditions for E. japonicus var. aurea-marginatus was 14 days. Some additional interventions after 14 days (it could be postponed appropriately under field conditions) may help ensure healthy growth of plants and retention of particulate matter.
Show more [+] Less [-]Investigation of road salts and biotic stressors on freshwater wetland communities
2016
Jones, Devin K. | Mattes, Brian M. | Hintz, William D. | Schuler, Matthew S. | Stoler, Aaron B. | Lind, Lovisa A. | Cooper, Reilly O. | Relyea, Rick A.
The application of road deicing salts has led to the salinization of freshwater ecosystems in northern regions worldwide. Increased chloride concentrations in lakes, streams, ponds, and wetlands may negatively affect freshwater biota, potentially threatening ecosystem services. In an effort to reduce the effects of road salt, operators have increased the use of salt alternatives, yet we lack an understanding of how these deicers affect aquatic communities. We examined the direct and indirect effects of the most commonly used road salt (NaCl) and a proprietary salt mixture (NaCl, KCl, MgCl2), at three environmentally relevant concentrations (150, 470, and 780 mg Cl−/L) on freshwater wetland communities in combination with one of three biotic stressors (control, predator cues, and competitors). The communities contained periphyton, phytoplankton, zooplankton, and two tadpole species (American toads, Anaxyrus americanus; wood frogs, Lithobates sylvaticus). Overall, we found the two road salts did not interact with the natural stressors. Both salts decreased pH and reduced zooplankton abundance. The strong decrease in zooplankton abundance in the highest NaCl concentration caused a trophic cascade that resulted in increased phytoplankton abundance. The highest NaCl concentration also reduced toad activity. For the biotic stressors, predatory stress decreased whereas competitive stress increased the activity of both tadpole species. Wood frog survival, time to metamorphosis, and mass at metamorphosis all decreased under competitive stress whereas toad time to metamorphosis increased and mass at metamorphosis decreased. Road salts and biotic stressors can both affect freshwater communities, but their effects are not interactive.
Show more [+] Less [-]Within- and among-population level differences in response to chronic copper exposure in southern toads, Anaxyrus terrestris
2013
Lance, Stacey L. | Flynn, R Wesley | Erickson, Matthew R. | Scott, David E.
Environmental contaminants are implicated in the global decline of amphibian populations. Copper (Cu) is a widespread contaminant that can be toxic at concentrations just above the normal physiological range. In the present study we examined the effects of chronic Cu aqueous exposure on embryos and larvae of southern toads, Anaxyrus (Bufo) terrestris. Measurable levels of Cu were found in larvae, with tissue concentrations up to 27.5 μg Cu/g dry mass. Aqueous concentrations of Cu as low as 10 μg/L significantly reduced survival to the free-swimming stage and no larvae reached metamorphosis at concentrations above 15 μg/L. Clutches from populations with prior Cu exposure had the lowest survivorship. Among several populations there was significant variation in survivorship at different levels of Cu. More data are needed to understand the underlying causes of within- and among-population resilience to anthropogenic stressors.
Show more [+] Less [-]Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms
2020
Guo, Xuan | Liu, Mingming | Zhong, Hua | Li, Peng | Zhang, Chengjun | Wei, Dan | Zhao, Tongke
Antibiotic and heavy metal pollution of aquatic environments are issues of serious concern, and the macrophyte Myriophyllum aquaticum may provide a viable solution for the removal of these contaminants. However, the toxic effects of coexisting tetracyclines (TCs) and Cu(II) on this plant species are currently unclear. In the present study, we constructed wetland microcosms planted with M. aquaticum and spiked these with three TCs (tetracycline, oxytetracycline, and chlortetracycline) and Cu(II) at concentrations ranging from 100 to 10,000 μg/L to investigate how Cu(II) influences the growth and tolerance responses of plants to TCs. After 12 weeks, we found that TCs had accumulated in the plants, and that plant growth and characteristics were significantly affected by the levels of both TCs and Cu(II). While low Cu(II) levels had a synergistic effect on the accumulation of TCs, high levels were observed to reduce accumulation. However, low levels of TCs and Cu(II) had a hormesis effect on plant growth, with plant biomass and leaf chlorophyll content decreasing and the malondialdehyde content and activities of antioxidant enzymes gradually increasing with an increase in TC dosage. The coexistence of low levels of Cu(II) was, however, found to alleviate these adverse effects. Principal component analysis revealed a close relationship among plant biomass, chlorophyll content, malondialdehyde content, and antioxidant enzyme activities. Considering that the Cu/TC ratio was shown to markedly affect M. aquaticum growth, the respective proportions of these pollutants should be taken into consideration in the future design of constructed wetlands.
Show more [+] Less [-]Assessing the influence of the genetically modified factor on mixture toxicological interactions in Caenorhabditis elegans: Comparison between wild type and a SOD type
2018
Li, Kai | Xu, Ya-Qian | Feng, Li | Liu, Shu-Shen
How to evaluate the ecological risk of transgenic technology is a focus of scientists because of the safety concerns raised by genetically modified (GM) organisms. Nevertheless, most studies are based on individual chemicals and always analyze the GM organism as a type of toxicant. In this study, we changed the approach and used GM organisms as the test objects with normal chemical exposure. Three types of chemicals (two substituted phenols, 4-chlorophenol and 4-nitrophenol; two ionic liquids, 1-butylpyridinium chloride and 1-butylpyridinium bromide; two pesticides, dichlorvos and glyphosate) were used to construct a six-component mixture system. The lethality to wild-type (N2) and sod-3::GFP (SOD-3) Caenorhabditis elegans was determined when they were exposed to the same mixture system after 12 and 24 h. The results showed that the pEC50 values of all of the single chemicals on SOD-3 were greater than those on N2 at 24 h. The toxicities of the single chemicals and nine mixture rays on the two strains increased with time. Notably, we discovered a significant difference between the two strains; time-dependent synergism occurred in mixtures on N2, but time-dependent antagonism occurred in mixtures on SOD-3. Finally, the strength of the synergism or antagonism turned to additive action on the two strains as the exposure time increased. These findings illustrated that the GM factor of the nematode influenced the mixture toxicological interaction at some exposure times. Compared with N2, SOD-3 were more sensitive to stress or toxic reactions. Therefore, the influence of the GM factor on mixture toxicological interactions in environmental risk assessment must be considered.
Show more [+] Less [-]Does long term low impact stress cause population extinction?
2017
Amorim, M.J.B. | Pereira, C. | Soares, A.M.V.M. | Scott-Fordsmand, J.J.
This study assessed and monitored 40 consecutive reproduction tests - multigenerational (MG) - of continuous exposure to Cd (at 2 reproduction Effect Concentrations (EC): EC10 and EC50) using the standard soil invertebrate Folsomia candida, in total 3.5 years of data were collected. Endpoints included survival, reproduction, size and metallothionein (MTc) gene expression. Further, to investigate adaptation to the toxicant, additional standard toxicity experiments were performed with the MG organisms of F6, F10, F26, F34 and F40 generations of exposure. Exposure to Cd EC10 caused population extinction after one year, whereas populations survived exposure to Cd EC50. Cd induced the up-regulation of the MTc gene, this being higher for the higher Cd concentration, which may have promoted the increased tolerance at the EC50. Moreover, EC10 induced a shift towards organisms of smaller size (positive skew), whereas EC50 induced a shift towards larger size (negative skew). Size distribution shifts could be an effect predictor. Sensitivity increased up to F10, but this was reverted to values similar to F0 in the next generations. The maximum Cd tolerance limits of F. candida increased for Cd EC50 MG. The consequences for risk assessment are discussed.
Show more [+] Less [-]Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations
2018
Dao, Thanh-Son | Vo, Thi-My-Chi | Wiegand, Claudia | Bui, Ba-Trung | Dinh, Khuong V.
Climate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L⁻¹ microcystin continuously for three generations. After each generation, each treatment was spit into two: one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences.
Show more [+] Less [-]