Refine search
Results 1-10 of 45
Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity Full text
2021
Inesta-Vaquera, Francisco | Navasumrit, Panida | Henderson, Colin J. | Frangova, Tanya G. | Honda, Tadashi | Dinkova-Kostova, Albena T. | Ruchirawat, Mathuros | Wolf, C Roland
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs’s effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Show more [+] Less [-]Adverse effects of in vitro GenX exposure on rat thyroid cell viability, DNA integrity and thyroid-related genes expression Full text
2020
Coperchini, Francesca | Croce, Laura | Denegri, Marco | Pignatti, Patrizia | Agozzino, Manuela | Netti, Giuseppe Stefano | Imbriani, Marcello | Rotondi, Mario | Chiovato, Luca
The hexafluoropropylene-oxide-dimer-acid (GenX) is a short-chain perfluoroalkyl substance that was recently introduced following the phase out of PFOA, as an alternative for the process of polymerization. GenX was detected at high concentrations in rivers, drinking water and in sera of exposed workers and recent findings suggested its potential dangerousness for human health.Aim of the study was to assess the consequences of GenX exposure on in vitro thyroid cells with particular attention to the effects on cell-viability, proliferation, DNA-damage and in the thyroid-related genes expression.FRTL-5 rat-thyroid cell line were incubated with increasing concentrations of GenX for 24 h, 48 h and 72 h to assess cell viability by WST-1. DNA-damage was assessed by comet assay and further confirmed by micronucleus assay. The proliferation of survived cells was measured by staining with crystal violet and evaluation of its optical density after incubation with SDS. Changes in TTF-1, Pax8, Tg, TSH-R, NIS and TPO genes expression were evaluated by RT-PCR.GenX exposure reduced FRTL-5 viability in a time and dose-dependent manner (24 h: ANOVA F = 22.286; p < 0.001; 48 h: F = 43.253, p < 0.001; 72 h: F = 49.708, p < 0.001). Moreover, GenX exerted a genotoxic effect, as assessed by comet assay (significant increase in tail-length, olive-tail-moment and percentage of tail-DNA) and micronucleus assay, both at cytotoxic and non-cytotoxic concentrations. Exposure to GenX at concentrations non-cytotoxic exerted a significant lowering of the expression of the regulatory gene TTF-1 (p < 0.05 versus untreated) and higher expression of Pax-8 (p < 0.05 versus untreated) and a down-regulation of NIS (p < 0.05 versus untreated). In addition, cells survived to GenX exposure showed a reduced re-proliferation ability (24 h: ANOVA F = 11,941; p < 0,001; 48 h: F = 93.11; p < 0.001; 72 h F = 21.65; p < 0.001).The exposure to GenX produces several toxic effects on thyroid cells in vitro. GenX is able to promote DNA-damage and to affect the expression of thyroid transcription-factor genes.
Show more [+] Less [-]Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans Full text
2020
Yang, Yunhan | Shao, Huimin | Wu, Qiuli | Wang, Dayong
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
Show more [+] Less [-]DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan Full text
2018
There is increasing evidence that toxicant exposure can alter DNA methylation profile, one of the main epigenetic mechanisms, particularly during embryogenesis when DNA methylation patterns are being established. In order to investigate the effects of the antibacterial agent Triclosan on DNA methylation and its correlation with gene expression, zebrafish embryos were exposed during 7 days post-fertilization (starting at maximum 8-cells stage) to 50 and 100 μg/l, two conditions for which increased sensitivity and acclimation have been respectively reported. Although global DNA methylation was not significantly affected, a total of 171 differentially methylated fragments were identified by Reduced Representation Bisulfite Sequencing. The majority of these fragments were found between the two exposed groups, reflecting dose-dependant specific responses. Gene ontology analysis revealed that pathways involved in TGF-β signaling were enriched in larvae exposed to 50 μg/l, while de novo pyrimidine biosynthesis functions were overrepresented in fish exposed to 100 μg/l. In addition, gene expression analysis revealed a positive correlation between mRNA levels and DNA methylation patterns in introns, together with significant alterations of the transcription of genes involved in nervous system development, transcriptional factors and histone methyltransferases. Overall this work provides evidence that Triclosan alters DNA methylation in zebrafish exposed during embryogenesis as well as related genes expression and proposes concentration specific modes of action. Further studies will investigate the possible long-term consequences of these alterations, i.e. latent defects associated with developmental exposure and transgenerational effects, and the possible implications in terms of fitness and adaptation to environmental pollutants.
Show more [+] Less [-]Cold Lake Blend diluted bitumen toxicity to the early development of Japanese medaka Full text
2017
Madison, Barry N. | Hodson, Peter V. | Langlois, Valerie S.
Diluted bitumen (dilbit) from Alberta oil sands (Canada) is transported across major continental watersheds, yet little is known about its toxicity to fish if spilled into aquatic environments. The toxicity of Cold Lake (CLB) dilbit was assessed for medaka embryos (Oryzias latipes) exposed to water accommodated fractions (WAF) and chemically-enhanced WAF (CEWAF) using Corexit®EC9500A as dispersant. The effects of CLB toxicity were similar to conventional crude oils and Access Western Blend (AWB) dilbit. The prevalence of malformations and cyp1a mRNA synthesis in hatched fish increased monotonically with concentration during WAF and CEWAF treatments and provided a novel indicator of dilbit PAH toxicity. Apart from nfe2 (an antioxidant transcription factor), there were no statistically significant monotonic exposure-responses of ahr, arnt2, cat, sod, gpx, gst, gsr, g6pdh, p53, and hsp70 transcripts at total polycyclic aromatic hydrocarbons (TPAH) concentrations bracketing EC50s for embryotoxicity (WAF ≅ 3 μg/L; CEWAF ≅ 0.1 μg/L TPAH). Based on measured TPAH concentrations in exposure test solutions, CLB dilbit was 6–10 fold more toxic to medaka than AWB during chronic exposures. Lack of direct monotonic gene transcription responses to increasing oil concentrations during exposures that were embryotoxic suggests that the capacity of the oxidative stress response is limited in earlier lifestages or that differences exist among species in mechanisms of toxicity. This study provides a comparative framework for identifying suitable biomarkers and toxicity methods for those fish species in sensitive lifestages at highest risk of Canadian oil sands dilbit exposure following a spill in the freshwater environment.
Show more [+] Less [-]AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator Full text
2017
Hale, Matthew D. | Galligan, Thomas M. | Rainwater, Thomas R. | Moore, Brandon C. | Wilkinson, Philip M. | Guillette, Louis J. | Parrott, Benjamin B.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link contamination events to critical genetic pathways during embryonic development, and carries significant potential to inform our understanding of potential health effects in wildlife and humans.
Show more [+] Less [-]Assessment of micropollutants toxicity by using a modified Saccharomyces cerevisiae model Full text
2021
Berrou, Kevin | Roig, Benoit | Cadiere, Axelle
Environment can be affected by a variety of micropollutants. In this paper, we develop a system to assess the toxicity on an environmental sample, based on the expression of a nanoluciferase under the control of the STB5 promotor in a yeast. The STB5 gene encodes for a transcription factor involved in a pleiotropic drug resistance and in the oxidative stress response. The response of the modified yeast was assessed using 42 micropollutants belonging to different families (antibiotics, pain killers, hormones, plasticizers, pesticides, etc.). Among them, 26 induced an increase of the bioluminescence for concentration ranges from pg.L⁻¹ to ng.L⁻¹. Surprisingly, for concentrations higher than 100 ng.L⁻¹, no response can be observed, suggesting that other mechanisms are involved when the stress increases. Analyzing the different responses obtained, we highlighted six nonmonotonic types of responses. The type of response seems to be independent of the properties of the compounds (polarity, toxicology, molecular weight) and of their family. In conclusion, we highlighted that a cellular response exists for very low exposition to environmental concentration of micropollutants and that it was necessary to explore the cellular mechanisms involved at very low concentration to provide a better risk assessment.
Show more [+] Less [-]Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans Full text
2021
Huang, Jiwei | Liao, Wan-Ru | How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Show more [+] Less [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene Full text
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
Show more [+] Less [-]Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans Full text
2020
Shao, Huimin | Wang, Dayong
Functional state of intestinal barrier plays an important role for environmental animals in being against various toxicants. We investigated GATA transcriptional factor ELT-2-mediated intestinal response to nanopolystyrere in Caenorhabditis elegans. Prolonged exposure to nanopolystyrene (≥1 μg/L) induced an increase in expression of ELT-2, and intestinal RNA interference (RNAi) knockdown of elt-2 caused enhancement in intestinal permeability. Meanwhile, mutation of elt-2 resulted in susceptibility to nanopolystyrene toxicity, and ELT-2 functioned in intestine to regulate the nanopolystyrene toxicity. ERM-1, CLEC-63, and CLEC-85 were identified as targets of ELT-2 in regulating the nanopolystyrene toxicity. ERM-1 was required for maintaining functional state in intestinal barrier, and functioned synergistically with CLEC-63 or CLEC-85 to regulate nanopolystyrene toxicity. Therefore, activation of intestinal ELT-2 by nanopolystyrere could mediate a protective strategy to maintain the functional state of intestinal barrier. During this process, intestinal ELT-2 activated two different molecular signals (ERM-1 signal and CLEC-63/85 signal) for nematodes against the nanopolystyrene toxicity.
Show more [+] Less [-]