Refine search
Results 1-5 of 5
Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation
2009
Wojas, Sylwia | Hennig, Jacek | Plaza, Sonia | Geisler, Markus | Siemianowski, Oskar | Skłodowska, Aleksandra | Ruszczyńska, Anna | Bulska, Ewa | Antosiewicz, Danuta M.
Arabidopsis MRPs/ABCCs have been shown to remove various organic and inorganic substrates from the cytosol to other subcellular compartments. Here we first demonstrate that heterologous expression of AtMRP7 in tobacco (Nicotiana tabacum var. Xanthi) modifies cadmium accumulation, distribution and tolerance. Arabidopsis MRP7 was localized both in the tonoplast and in the plasma membrane when expressed in tobacco. Its overexpression increased tobacco Cd-tolerance and resulted in enhanced cadmium concentration in leaf vacuoles, indicating more efficient detoxification by means of vacuolar storage. Heterologous AtMRP7 expression also led to more efficient retention of Cd in roots, suggesting a contribution to the control of cadmium root-to-shoot translocation. The results underscore the use of AtMRP7 in plant genetic engineering to modify the heavy-metal accumulation pattern for a broad range of applications.
Show more [+] Less [-]Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid
2021
Peng, Danliu | Liu, Anran | Wang, Wenjing | Zhang, Yue | Han, Zichen | Li, Xiaozhou | Wang, Gang | Guan, Chunfeng | Ji, Jing
Among emerging organic contaminants (EOCs), triclosan (TCS) is an antibacterial agent and frequently detected in sludge. In this study, RNA sequencing (RNA-seq) was used to obtain the first transcriptomic profile of tobacco with TCS treatment in comparison with control. The results of transcriptome profiling indicated that salicylic acid (SA) signalling pathway actively participated in the tobacco’s response to TCS treatment. The accumulation of endogenous SA in transgene tobacco lines transformed with a homologous gene of SA binding protein (LcSABP) was significantly enhanced. The resistance of transgenic tobacco lines to TCS was markedly enhanced revealed by morphological and physiological indexes while the total Chl level and Pₙ of transgenic individuals showed about 180% and 250% higher than that of WT on average, and the accumulation of H₂O₂ and O₂⁻ induced by TCS in SABP overexpressing tobacco was 35.3%–37.3% and 53.0%–56.0% lower than that of WT. In order to further explore the mechanism of TCS tolerance in transgenic plants, RNA-seq was then performed to obtain the second transcriptomic profile between wild type and transgenic samples with TCS exposure. The results indicated that differentially expressed genes (DEGs) were most highly enriched in MAPK signalling pathway, amino acid synthesis pathway and plant hormone transduction pathway. Especially, genes encoding key proteins such as cytochrome P450, laccase, peroxidase, glycosyl transferase, glutathione S-transferase and ATP-binding cassette were considered to be related to the increased tolerance ability of transgenic tobacco to the treatment of TCS stress. This research will likely provide novel insights into the molecular mechanism of SA-mediated amelioration of TCS stress on tobacco.
Show more [+] Less [-]Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina
2018
Pandolfo, ClaudioE. | Presotto, Alejandro | Carbonell, FranciscoTorres | Ureta, Soledad | Poverene, Mónica | Cantamutto, Miguel
Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.
Show more [+] Less [-]Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland
2014
Hecht, Mirco | Oehen, Bernadette | Schulze, Jürg | Brodmann-Kron, Peter | Bagutti, Claudia
To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).
Show more [+] Less [-]The variability of processes involved in transgene dispersal--case studies from Brassica and related genera
2009
Jørgensen, Rikke Bagger | Hauser, Thure | D'Hertefeldt, Tina | Andersen, Naja Steen | Hooftman, Danny
Background, aim, and scope We strive to predict consequences of genetically modified plants (GMPs) being cultivated openly in the environment, as human and animal health, biodiversity, agricultural practise and farmers' economy could be affected. Therefore, it is unfortunate that the risk assessment of GMPs is burdened by uncertainty. One of the reasons for the uncertainty is that the GMPs are interacting with the ecosystems at the release site thereby creating variability. This variability, e.g. in gene flow, makes consequence analysis difficult. The review illustrates the great uncertainty of results from gene-flow analysis. Main features Many independent experiments were performed on the individual processes in gene flow. The results comprise information both from laboratory, growth chambers and field trials, and they were generated using molecular or phenotypic markers and analysis of fitness parameters. Monitoring of the extent of spontaneous introgression in natural populations was also performed. Modelling was used as an additional tool to identify key parameters in gene flow. Results The GM plant may affect the environment directly or indirectly by dispersal of the transgene. Magnitude of the transgene dispersal will depend on the GM crop, the agricultural practise and the environment of the release site. From case-to-case these three factors provide a variability that is reflected in widely different likelihoods of transgene dispersal and fitness of introgressed plants. In the present review, this is illustrated through a bunch of examples mostly from our own research on oilseed rape, Brassica napus. In the Brassica cases, the variability affected all five main steps in the process of gene dispersal. The modelling performed suggests that in Brassica, differences in fitness among plant genome classes could be a dominant factor in the establishment and survival of introgressed populations. Discussion Up to now, experimental analyses have mainly focused on studying the many individual processes of gene flow. This can be criticised, as these experiments are normally carried out in widely different environments and with different genotypes, and thus providing bits and pieces difficult to assemble. Only few gene-flow studies have been performed in natural populations and over several plant generations, though this could give a more coherent and holistic view. Conclusion The variability inherent in the processes of gene flow in Brassica is apparent and remedies are wished for. One possibility is to expose the study species to additional experiments and monitoring, but this is costly and will likely not cover all possible scenarios. Another remedy is modelling gene flow. Modelling is a valuable tool in identifying key factors in the gene-flow process for which more knowledge is needed, and identifying parameters and processes which are relatively insensitive to change and therefore require less attention in future collections of data. But the interdependence between models and experimental data is extensive, as models depend on experimental data for their development or testing. Recommendations More and more transgenic varieties are being grown worldwide harbouring genes that might potentially affect the environment (e.g. drought tolerance, salt tolerance, disease tolerance, pharmaceutical genes). This calls for a thorough risk assessment. However, in Brassica, the limited and uncertain knowledge on gene flow is an obstacle to this. Modelling of gene flow should be optimised, and modelling outputs verified in targeted field studies and at the landscape level. Last but not least, it is important to remember that transgene flow in itself is not necessarily a thread, but it is the consequences of gene flow that may jeopardise the ecosystems and the agricultural production. This emphasises the importance of consequence analysis of genetically modified plants.
Show more [+] Less [-]