Refine search
Results 1-10 of 41
Microplastics in livers of European anchovies (Engraulis encrasicolus, L.)
2017
Collard, France | Gilbert, Bernard | Compère, Philippe | Eppe, Gauthier | Das, Krishna | Jauniaux, Thierry | Parmentier, Eric
peer reviewed | Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field. The study focuses mainly on the European anchovy Engraulis encrasicolus but concerns also the European pilchard Sardina pilchardus and the Atlantic herring Clupea harengus. Two complementary methodologies were used to attest the occurrence of MPs in the hepatic tissue and to exclude contamination. 1) MPs were isolated by degradation of the hepatic tissue. 2) Cryosections were made on the livers and observed in polarized light microscopy. Both methods separately revealed that MPs, mainly polyethylene (PE), were translocated into the livers of the three clupeid species. In anchovy, 80 per cent of livers contained relatively large MPs that ranged from 124 μm to 438 μm, showing a high level of contamination. Two translocation pathways are hypothesized: (i) large particles found in the liver resulted from the agglomeration of smaller pieces, and/or (ii) they simply pass through the intestinal barrier. Further studies are however required to understand the exact process. © 2017 Elsevier Ltd
Show more [+] Less [-]Uptake, speciation and detoxification of antimonate and antimonite in As-hyperaccumulator Pteris Cretica L
2022
He, Si-Xue | Chen, Jia-Yi | Hu, Chun-Yan | Han, Ran | Dai, Zhi-Hua | Guan, Dong-Xing | Ma, Lena Q.
Antimony (Sb) and arsenic (As) are chemical analogs, but their behaviors in plants are different. To investigate the Sb uptake, translocation and speciation in As-hyperaccumulator P. cretica, a hydroponic experiment was conducted. In this study, P. cretica was exposed to 0.2-strength Hoagland nutrient solution, which contained 0.5 or 5 mg/L antimonite (SbIII) or antimonate (SbV). After 14 d exposure, P. cretica took up 1.4–2.8 times more SbIII than SbV. Since P. cretica was unable to translocate Sb, its roots accumulated >97% Sb with the highest at 7965 mg/kg. In both SbIII and SbV treatments, SbIII was the predominant species in P. cretica, with 90–100% and 46–100% SbIII in the roots. As the first barrier against Sb to enter plant cells, more Sb was accumulated in cell wall than cytosol or organelles. The results suggest that P. cretica may detoxify Sb by reducing SbV to SbIII and immobilizing it in root cell walls. Besides, the presence of SbIII significantly reduced the concentrations of dissolved organic C including organic acids in P. cretica root exudates. Further, increasing Sb levels promoted P accumulation in the plant, especially in the fronds, which may help P. cretica growth. The information from this study shed light on metabolic transformation of Sb in As-hyperaccumulators P. cretica, which helps to better understand Sb uptake and detoxification by plants.
Show more [+] Less [-]Nonstereoselective behavior of novel chiral organophosphorus pesticide Dufulin in cherry radish by different absorption methods
2022
Zheng, Ruonan | Shao, Siyao | Zhang, Subin | Yu, Zhiyang | Zhang, Weiwei | Wu, Tao | Zhou, Xin | Ye, Qingfu
Dufulin is a biologically derived antiviral agent chemically synthesized by α-phosphoramidate in sheep and is effective against viral diseases in plants such as tobacco, rice, cucumber and tomato. However, the environmental behaviors and fate of Dufulin under different cultivation systems remain unknown. This study investigates the absorption, translocation and accumulation of ¹⁴C-Dufulin stereoisomers introduced by pesticide leaf daubing and by mixing the pesticide with soil in different tissues of cherry radish. We particularly focused on whether the behaviors of Dufulin enantiomers in plants were stereoselective. In the leaf uptake experiments, S-Dufulin and R-Dufulin were transported both up and down, while more than 93% of the pesticide remained in the labeled leaves. During the radicular absorption experiments, both enantiomers of Dufulin were taken up by radish roots and moved to the upper part of the plant, while less than 0.2% Dufulin was absorbed from the soil. Hence, it was easier for Dufulin to enter plants through the leaf surface than through the roots. However, we found in this trial that the stereoisomers of Dufulin underwent nonstereoselective absorption and translocation, which implies that rac-Dufulin and its metabolites should be a major research priority. Overall, our results provide a relatively accurate prediction of the risk assessment of Dufulin, which will help guide its rational use in the environment as well as ensure eco-environmental safety and human health.
Show more [+] Less [-]Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil
2021
Ahmed, Bilal | Rizvi, Asfa | Syed, Asad | Jailani, Afreen | Elgorban, Abdallah M. | Khan, Mohammad Saghir | AL-Shwaiman, Hind A. | Lee, Jintae
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al₂O₃, TiO₂; 3.9–34 nm) and their corresponding metal oxide bulk particles (BPs; 144–586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn²⁺, Cu²⁺, and Al³⁺). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn²⁺, (ii) CuO-NPs > CuO-BPs > Cu²⁺, (iii) Al³⁺> Al₂O₃-NPs > Al₂O₃-BPs and (iv) TiO₂-NPs > TiO₂-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg⁻¹ increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu²⁺ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1–4 g kg⁻¹ further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
Show more [+] Less [-]High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants
2021
Ding, Jingli | Liu, Lu | Wang, Chuang | Shi, Lei | Xu, Fangsen | Cai, Hongmei
Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P–Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.
Show more [+] Less [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
Show more [+] Less [-]Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam)
2019
Thanh-Nho, Nguyen | Marchand, Cyril | Strady, Emilie | Huu-Phat, Nguyen | Nhu-Trang, Tran-Thi
Mangrove sediments can store high amount of pollutants that can be more or less bioavailable depending on environmental conditions. When in available forms, these elements can be subject to an uptake by mangrove biota, and can thus become a problem for human health. The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, we were interested in the relationships between mangrove habitats, sediment quality and bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees (Avicennia alba and Rhizophora apiculata) were collected, as well as different snail species: Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace elements concentrations in the different tissues were determined by ICP-MS after digestion with concentrated HNO₃ and H₂O₂. Concentrations differed between stands and tissues, showing the influence of sediment geochemistry, species specific requirements, and eventually adaptation abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were “macroconcentrators” for Cu, with BCF values reaching up to 42.8 for Cerithidea obtusa. We suggest that high quantity of As in all snails may result from its high bioavailability and from their ability to metabolize As.
Show more [+] Less [-]Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.)
2018
Tombuloglu, Huseyin | Tombuloglu, Guzin | Slimani, Yassine | Ercan, İsmail | Sozeri, Hüseyin | Baykal, Abdulhadi
The main objective of this study was to assess the uptake and translocation of MnFe₂O₄ magnetic nanoparticles (MNPs) in hydroponically grown barley (Hordeum vulgare L.). Hydrothermally synthesized and well characterized MNPs (average crystallite size of 14.5 ± 0.5 nm) with varied doses (62.5, 125, 250, 500, and 1000 mg L⁻¹) were subjected to the plants at germination and early growing stages (three weeks). The tissues analyzed by vibrating-sample magnetometer (VSM) and transmission electron microscopy (TEM) revealed the uptake and translocation of MNPs, as well as their internalization in the leaf cells. Also, elemental analysis proved that manganese (Mn) and iron (Fe) contents were ∼7–9 times and ∼4–7 times higher in the leaves of MNPs-treated plants than the ones for non-treated control, respectively. 250 mg L⁻¹ of MNPs significantly (at least p < 0.05) promoted the fresh weight (FW, %10.25). However, higher concentrations (500 and 1000 mg L⁻¹) remarkably reduced the increase to %8 and %5, respectively, possibly due to the restricted water uptake. Also, catalase activity was increased from 91 (μM H₂O₂ min⁻¹ mg⁻¹) to 138 in leaves, and decreased to 66 in roots upon 1000 mg L⁻¹ of MNPs application. Chlorophyll and carotenoid contents were not significantly changed, except chlorophyll a (%6 increase at 1000 mg L⁻¹, p < 0.05). Overall, MnFe₂O₄ NPs were up-taken from the roots and migrated to the leaves which promoted the growth parameters of barley. Hence, MNPs can be suggested for barley breeding programs and can be proposed as effective delivery system for agrochemicals. However, the possible negative effect of MNPs due to its potential horizontal transfer from plants to animals via the food chain must be also considered.
Show more [+] Less [-]Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants
2017
Ge, Jing | Cui, Kai | Yan, Huangqian | Li, Yong | Chai, Yangyang | Liu, Xianjin | Cheng, Jiangfeng | Yu, Xiangyang
Uptake and translocation of imidacloprid (IMI), thiamethoxam (THX) and difenoconazole (DFZ) in rice plants (Oryza sativa L.) were investigated with a soil-treated experiment at two application rates: field rate (FR) and 10*FR under laboratory conditions. The dissipation of the three compounds in soil followed the first-order kinetics and DFZ showed greater half-lives than IMI and THX. Detection of the three compounds in rice tissues indicated that rice plants could take up and accumulate these pesticides. The concentrations of IMI and THX detected in leaves (IMI, 10.0 and 410 mg/kg dw; THX, 23.0 and 265 mg/kg dw) were much greater than those in roots (IMI, 1.37 and 69.3 mg/kg dw; THX, 3.19 and 30.6 mg/kg dw), which differed from DFZ. The DFZ concentrations in roots (15.6 and 79.1 mg/kg dw) were much greater than those in leaves (0.23 and 3.4 mg/kg dw). The bioconcentration factor (BCF), representing the capability of rice to accumulate contaminants from soil into plant tissues, ranged from 1.9 to 224.3 for IMI, from 2.0 to 72.3 for THX, and from 0.4 to 3.2 for DFZ at different treated concentrations. Much higher BCFs were found for IMI and THX at 10*FR treatment than those at FR treatment, however, the BCFs of DFZ at both treatments were similar. The translocation factors (TFs), evaluating the capability of rice to translocate contaminants from the roots to the aboveground parts, ranged from 0.02 to 0.2 for stems and from 0.02 to 9.0 for leaves. The tested compounds were poorly translocated from roots to stems, with a TF below 1. However, IMI and THX were well translocated from roots to leaves. Clothianidin (CLO), the main metabolite of THX, was detected at the concentrations from 0.02 to 0.5 mg kg−1 in soil and from 0.07 to 7.0 mg kg−1 in plants. Concentrations of CLO in leaves were almost 14 times greater than those in roots at 10*FR treatment.
Show more [+] Less [-]Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata
2017
Han, Yong-He | Liu, Xue | Rathinasabapathi, Bala | Li, Hongbo | Chen, Yanshan | Ma, Lena Q.
Arsenic (As) in soils is of major environmental concern due to its ubiquity and carcinogenicity. Pteris vittata (Chinese brake fern) is the first known As-hyperaccumulator, which is highly efficient in extracting As from soils and translocating it to the fronds, making it possible to be used for phytoremediation of As-contaminated soils. In addition, P. vittata has served as a model plant to study As metabolisms in plants. Based on the recent advances, we reviewed the mechanisms of efficient As solubilization and transformation in rhizosphere soils of P. vittata and effective As uptake, translocation and detoxification in P. vittata. We also provided future research perspectives to further improve As hyperaccumulation by P. vittata.
Show more [+] Less [-]