Refine search
Results 1-5 of 5
Parasitological contamination with eggs Ascaris spp., Trichuris spp. and Toxocara spp. of dehydrated municipal sewage sludge in Poland
2019
Zdybel, Jolanta | Karamon, Jacek | Dąbrowska, Joanna | Różycki, Mirosław | Bilska-Zając, Ewa | Kłapeć, Teresa | Cencek, Tomasz
The objective of the present study was to evaluate the contamination of sewage sludge produced by municipal waste treatment plants in Poland by viable eggs of intestinal parasites of the genera Ascaris, Toxocara and Trichuris (ATT). Ninety-two municipal, mechanical-biological sewage treatment plants located within Poland were selected. These plants belonged to types of agglomerations: group 0 (large), group 1 (medium), group 2 (smaller) and group 3 (small). Samples were collected at the final stage of sewage treatment after the addition of flocculent to sludge, followed by dehydration. The samples were examined by a method adjusted to examine sewage sludge dehydrated using polyelectrolytes. The viability of the isolated eggs was evaluated based on incubation in a moist chamber. Live eggs of intestinal nematodes were found in 99% of samples. Most samples were contaminated by the eggs of Ascaris spp. (95%) and Toxocara spp. (96%). However, Trichuris spp. eggs were detected in 60% of samples. The mean number of eggs in 1 kg of dry mass (eggs/kg d.m.) was 5600 for Ascaris, 3700 for Toxocara and 1100 for Trichuris. The highest number of ATT eggs was detected in samples from sewage treatment plants located in south-eastern and central Poland. The highest number of ATT eggs was found in sewage sludge produced in large sewage treatment plants (agglomeration Groups 0 and 1), with mean values of 15,000 and 8900 eggs/kg d.m. The present study is the first parasitological investigation conducted on a large number of samples (92 samples) taken from various types of municipal sewage treatment plants located throughout Poland (16 regions) after the common introduction of polyelectrolytes during sewage sludge dehydration. The results of this study indicate that sludge produced in municipal sewage treatment plants is highly contaminated with parasite eggs.
Show more [+] Less [-]Effectiveness of helminth egg reduction by solar drying and liming of sewage sludge
2021
An-nori, Amal | El Fels, Loubna | Ezzariai, Amine | El Hayani, Bouchra | El Mejahed, Khalil | El Gharous, Mohamed | Hafidi, Mohamed
The present study is aimed at assessing the effectiveness of solar drying process in terms of helminth egg reduction in sewage sludge (SS) generated from an activated sludge wastewater treatment plant (WWTP) in Marrakesh city (Morocco). It is also engaged to highlight a synergic effect of liming (1% CaO) and solar drying on helminth egg reduction. The solar drying process was conducted for 45 days, in summer under a semi-arid climate in a pilot scale polycarbonate-based tunnel (2 m³). Before undergoing solar drying process, data showed an important load of helminth eggs including Ascaris sp., Schistosoma spp., Capillaria spp., Trichuris spp., Ankylostome spp., Toxocara spp., and Taenia spp. in limed sludge (LS) and non-limed sludge (NLS) (15.2 and 17.9 eggs/g, respectively). Ascaris eggs were the most abundant (11.2 and 13.5 eggs/g in LS and NLS, respectively). By the end of the solar drying process, a considerable removal of the total helminth eggs was recorded in LS and NLS (92.8% and 91.6%, respectively). A complete removal of Schistosoma spp., Capillaria spp., Trichuris spp., Toxocara spp. and Taenia spp. was noted in LS and NLS. In the case of Ankylostome spp., data showed a total removal in LS and 81% in NLS; however, the final load is in agreement with the standards (0.4 egg/g). As for Ascaris spp., neither liming nor solar drying process allowed a complete removal (91% and 90% in NLS and LS, respectively) and the final load (1.1 egg/g) does not fulfill the WHO requirements for an agricultural use. Principal component analysis (PCA) demonstrated a negative correlation between dry matter (DM) content (hence temperature) and helminth egg concentration. No significant synergic effect of liming and solar drying process was showed by statistical analysis. This is substantiating that temperature is the key parameter involved in helminth egg removal while undergoing solar drying of SS.
Show more [+] Less [-]Sludge nematodes, cestodes, and trematodes eggs variation from lagooning, activated sludge and infiltration-percolation wastewater treatment system under semi-arid climate
2019
El Fels, Loubna | El Hayany, Bouchra | El Faiz, Abdelouahed | Saadani, Mustapha | Houari, Mustapha | Hafidi, Mohamed
The prevalence and the identification of the helminth eggs load of raw sewage sludge was assessed of three different wastewater treatment systems. The results showed a variety of parasite species with following average concentrations; five taxa belonging to three classes nematodes, cestodes and trematodes were inventoried. The class of nematodes is the most diverse with 5 taxa. It is represented by the eggs of Ascaris sp., Capillaria sp., Trichuris sp., Toxocara sp., and Ankylostome sp., then comes the cestodes class, this is represented by the eggs of Tænia sp. The trematode class is represented by Schistosoma sp. The lagooning station of Chichaoua shows the highest load 7 species with Ascaris 21 eggs/g; Capillaria sp., 11 eggs/g; Trichuris sp., 6 eggs/g; Toxocara sp., 2 eggs/g and Ankylostome sp., 1 egg/g; Taenia sp., 2eggs/g; and Schistosoma sp., 1 egg/g. Infiltration-percolation sludge show the presence of 4 species of helminths eggs in sludge from anaerobic settling with different rates: 15 eggs/g for Ascaris sp., 15 eggs/g for Trichuris sp., 13 eggs/g for Capillaria sp., and 8 eggs/g for Taenia sp. However, in sand filter pool, the sludge helminth eggs load was decreased by 47% of Ascaris sp., 85% of Capillaria sp., and 75% of Taenia sp., Nevertheless, an increase of Trichuris eggs load was noted in the second sludge by 17%. Five helminth eggs was detected in primary sludge coming from decantation pools in activated sludge plant in Marrakech, that is Ascaris sp., with a load of 16 eggs/g; Capillaria sp., with 3 eggs/g, Trichuris eggs with 2 eggs/g; Taenia sp., with 4 eggs/g; and Schistosoma sp., with 2 eggs/g. The abatement load of Ascaris sp. with 81% and Schistosoma and Taenia sp., with 100% was noted in biological sludge. Nevertheless, an increase load of Capillaria and Trichuris eggs 81% and 75% respectively was observed in this sludge coming from biological pools. The distribution of parasitic helminth eggs is linked to the differences in demographic and socio-economic status, seasonal variation, physico-chemical characteristic of helminth eggs, and the purification wastewater system performance.
Show more [+] Less [-]Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents
2018
Amoah, IsaacDennis | Reddy, Poovendhree | Seidu, Razak | Stenström, ThorAxel
Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.
Show more [+] Less [-]Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate
2018
El Hayany, Bouchra | El Glaoui, GhizlenEl Mezouari | Rihanni, Mohammed | Ezzariai, Amine | El Faiz, Abdelouahed | El Gharous, Mohamed | Hafidi, Mohamed | El Fels, Loubna
In this work, we assessed the drying and composting effectiveness of helminth eggs removal from sewage sludge of a lagoon wastewater treatment plant located in Chichaoua city. The composting was run after mixing sludge with green waste in different proportions: M1 (½ sludge + ½ green waste), M2 ([Formula: see text] sludge + [Formula: see text] green waste), and M3 ([Formula: see text] sludge + [Formula: see text] green waste) for 105 days. The analysis of the dewatered sewage sludge showed a load of 8–24 helminth eggs/g of fresh matter identified as Ascaris spp. eggs (5–19 eggs/g) followed by Toxocara spp. (0.2 to 2.4 eggs/g); Hookworm spp. and Capillaria spp. (0.4–1 egg/g); Trichuris spp., Taenia spp., and Shistosoma spp. (< 1 egg/g) in the untreated sludge. After 105 days of treatment by composting, we noted a total reduction of helminth eggs in the order of 97.5, 97.83, and 98.37% for mixtures M1, M2, and M3, respectively. The Ascaris spp. eggs were reduced by 98% for M1 and M3 treatments and by 97% for M₂ Treatment. Toxocara spp., Hookworm spp., Trichuris spp., Capillaria spp., and Shistosoma spp. eggs were totally eliminated (100% decrease) and the Taenia spp. was absent from the first stage of composting. These results confirm the effectiveness of both dehydrating and composting processes on the removal of helminth eggs.
Show more [+] Less [-]