Refine search
Results 1-10 of 113
The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays Full text
2018
Woignier, Thierry | Clostre, Florence | Fernandes, Paula | Soler, Alain | Rangon, Luc | Sastre-Conde, Maria Isabel | Jannoyer-Lesueur, Magalie
The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays Full text
2018
Woignier, Thierry | Clostre, Florence | Fernandes, Paula | Soler, Alain | Rangon, Luc | Sastre-Conde, Maria Isabel | Jannoyer-Lesueur, Magalie
Some volcanic soils like andosols contain short-range order nanoclays (allophane) which build aggregates with a tortuous and fractal microstructure. The aim of the work was to study the influence of the microstructure and mesoporosity of the allophane aggregates on the pesticide chlordecone retention in soils. Our study shows that the allophane microstructure favors pollutants accumulation and sequestration in soils. We put forth the importance of the mesoporous microstructure of the allophane aggregates for pollutant trapping in andosols. We show that the soil contamination increases with the allophane content but also with the mesopore volume, the tortuosity, and the size of the fractal aggregate. Moreover, the pore structure of the allophane aggregates at nanoscale favors the pesticide retention. The fractal and tortuous aggregates of nanoparticles play the role of nanolabyrinths. It is suggested that chlordecone storage in allophanic soils could be the result of the low transport properties (permeability and diffusion) in the allophane aggregates. The poor accessibility to the pesticide trapped in the mesopore of allophane aggregates could explain the lower pollutant release in the environment. (Résumé d'auteur)
Show more [+] Less [-]The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays Full text
2018
Woignier, Thierry | Clostre, Florence | Fernandes, Paula | Soler, Alain | Rangon, Luc | Sastre-Conde, Maria Isabel | Lesueur Jannoyer, Magalie
Some volcanic soils like andosols contain short-range order nanoclays (allophane) which build aggregates with a tortuous and fractal microstructure. The aim of the work was to study the influence of the microstructure and mesoporosity of the allophane aggregates on the pesticide chlordecone retention in soils. Our study shows that the allophane microstructure favors pollutants accumulation and sequestration in soils. We put forth the importance of the mesoporous microstructure of the allophane aggregates for pollutant trapping in andosols. We show that the soil contamination increases with the allophane content but also with the mesopore volume, the tortuosity, and the size of the fractal aggregate. Moreover, the pore structure of the allophane aggregates at nanoscale favors the pesticide retention. The fractal and tortuous aggregates of nanoparticles play the role of nanolabyrinths. It is suggested that chlordecone storage in allophanic soils could be the result of the low transport properties (permeability and diffusion) in the allophane aggregates. The poor accessibility to the pesticide trapped in the mesopore of allophane aggregates could explain the lower pollutant release in the environment.
Show more [+] Less [-]Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke Full text
2021
Jin, Mengyi | Wang, Yanzi | An, Xiaoya | Kang, Honghua | Wang, Yixin | Wang, Guoliang | Gao, Yang | Wu, Shuiping | Reinach, Peter S. | Liu, Zuguo | Xue, Yuhua | Li, Cheng
Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein–protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.
Show more [+] Less [-]The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas Full text
2021
Li, Zhuo | Ali Shah, Syed Waqas | Zhou, Qin | Yin, Xiujie | Teng, Xiaohua
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H₂O₂) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Show more [+] Less [-]Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure Full text
2019
Fan, Huiyang | Jin, Mingkang | Wang, Huan | Xu, Qianru | Xu, Lei | Wang, Chenxuanzi | Du, Shaoting | Liu, Huijun
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
Show more [+] Less [-]Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator – Microsorum pteropus Full text
2019
Lan, Xin-Yu | Yan, Yun-Yun | Yang, Bin | Li, Xin-Yuan | Xu, Fu-Liu
Microsorum pteropus is a novel potential Cd (cadmium) aquatic hyperaccumulator. In the present study, hydroponic experiments were conducted to assess the accumulation and subcellular distribution of Cd in the root, stem and leaf of M. pteropus. SEM (scanning electron microscopy) – EDX (energy dispersive X-ray fluorescence spectrometer) and TEM (transmission electron microscopy) were used to observe the ultrastructure of different tissues under 500 μM Cd exposure. After exposure to 500 μM Cd for 7 days, the root, stem and leaf of M. pteropus can accumulate to be > 400 mg/kg Cd in dry mass with no significant influence on the growth. In the root and leaf of M. pteropus, the Cd was more likely to store in the cell wall fraction. However, Cd in the stem was mainly stored in both the cell wall fraction and the cytoplasm fraction. Under SEM observation and EDX detection, 1) Cd was found to be sequestrated in the epidermis or chelated in the root cells, 2) no significant deposit spots were observed in the stem, 3) Cd was found in the trichome of the leaf, and the sporangium was not damaged. TEM observations revealed 1) possible Cd precipitations in the root cell and 2) no significant ultrastructure variation in the stem, and 3) the chloroplast retained its structure and was not affected by the Cd. M. pteropus showed great capacity for Cd accumulation without influencing growth. In addition, the ultrastructure of all the tissues was not damaged by the Cd. M. pteropus showed a great potential in phytoremediation in heavy metal polluted water solutions, and may provide new directions for the study of resistance mechanisms of aquatic hyperaccumulators.
Show more [+] Less [-]Aluminum: A potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling Full text
2018
Novaes, Rômulo D. | Mouro, Viviane G.S. | Gonçalves, Reggiani V. | Mendonça, Andrea A.S. | Santos, Eliziária C. | Fialho, Maria C.Q. | Machado-Neves, Mariana
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1 = distilled water; and G2 to G5 = 0.02, 0.1, 50, and 200 mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
Show more [+] Less [-]Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR Full text
2017
Zhao, Yanyan | Cao, Qing | He, Yaojia | Xue, Qingju | Xie, Liqiang | Yan, Yunjun
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.
Show more [+] Less [-]Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.) Full text
2016
Zhao, Hai-Ming | Du, Huan | Xiang, Lei | Li, Yan-Wen | Li, Hui | Cai, Quan-Ying | Mo, Ce-Hui | Cao, Gang | Wong, Ming-Hung
To increase understanding on the mechanisms of cultivar difference in contaminant accumulation in crops, this study was designed to compare the physiological responses to di-n-butyl phthalate (DBP) exposure between low (Lvbao70) and high (Huaguan) DBP cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Under high DBP exposure, significant differences in various physiological responses were observed between the two cultivars, which might account for the variation in DBP accumulation. Ultrastructure observation also showed different alterations or damages in the mesophyll cell structures between both cultivars, especially for the chloroplast disintegration, starch grain quantity, and plastoglobuli accumulation. Compared with Huaguan, Lvbao70 suffered greater decreases in biomass, chlorophyll content, carbon assimilation, gas exchange parameters, photosynthetic electron transport capacity, and antioxidase activities, which would have resulted in a great reduction of photosynthetic capacity. Although Lvbao70 enhanced energy dissipation and activities of some antioxidant enzymes, they did not provide sufficient protection against oxidative damage caused by DBP. The result suggested that the lower DBP tolerance of Lvbao70 might be associated with its poor physiological performances, which was responsible for its lower DBP accumulation to protect itself from toxicity. Additionally, Lvbao70 had a significantly lower transpiration rate and stomatal conductance than Huaguan, which might be the factors regulating DBP-accumulation variation.
Show more [+] Less [-]Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales – Bryophyta) Full text
2013
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days.At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens.When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition.These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum.
Show more [+] Less [-]Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations Full text
2013
García-Negrete, C.A. | Blasco, J. | Volland, M. | Rojas, T.C. | Hampel, M. | Lapresta-Fernández, A. | Jiménez de Haro, M.C. | Soto, M. | Martínez Fernández, Ángel
The degree of aggregation and/or coalescence of Au-citrate nanoparticles (AuNPs, mean size 21.5 ± 2.9 nm), after delivery in simulated seawater, are shown to be concentration-dependent. At low concentrations no coalescence and only limited aggregation of primary particles were found. Experiments were performed in which the marine bivalve (Ruditapes philippinarum) was exposed to AuNPs or dissolved Au and subsequently, bivalve tissues were studied by Scanning and Transmission Electron Microscopy and chemical analyses. We show that the bivalve accumulates gold in both cases within either the digestive gland or gill tissues, in different concentrations (including values of predicted environmental relevance). After 28 days of exposure, electron-dense deposits (corresponding to AuNPs, as proven by X-ray microanalysis) were observed in the heterolysosomes of the digestive gland cells. Although non-measurable solubility of AuNPs in seawater was found, evidence is presented of the toxicity produced by Au3+ dissolved species (chloroauric acid solutions) and its relevance is discussed.
Show more [+] Less [-]