Refine search
Results 1-6 of 6
Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach
2019
Douglas, Ashley N.J. | Irga, Peter J. | Torpy, Fraser R.
Global urbanisation has resulted in population densification, which is associated with increased air pollution, mainly from anthropogenic sources. One of the systems proposed to mitigate urban air pollution is urban forestry. This study quantified the spatial associations between concentrations of CO, NO₂, SO₂, and PM₁₀ and urban forestry, whilst correcting for anthropogenic sources and sinks, thus explicitly testing the hypothesis that urban forestry is spatially associated with reduced air pollution on a city scale. A Land Use Regression (LUR) model was constructed by combining air pollutant concentrations with environmental variables, such as land cover type and use, to develop predictive models for air pollutant concentrations. Traffic density and industrial air pollutant emissions were added to the model as covariables to permit testing of the main effects after correcting for these air pollutant sources. It was found that the concentrations of all air pollutants were negatively correlated with tree canopy cover and positively correlated with dwelling density, population density and traffic count. The LUR models enabled the establishment of a statistically significant spatial relationship between urban forestry and air pollution mitigation. These findings further demonstrate the spatial relationships between urban forestry and reduced air pollution on a city-wide scale, and could be of value in developing planning policies focused on urban greening.
Show more [+] Less [-]Carbon storage and sequestration by trees in urban and community areas of the United States
2013
Nowak, David J. | Greenfield, Eric J. | Hoehn, Robert E. | Lapoint, Elizabeth
Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m−2 of tree cover and sequestration densities average 0.28 kg C m−2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes).
Show more [+] Less [-]Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system
2013
Cabaraban, Maria Theresa I. | Kroll, Charles N. | Hirabayashi, Satoshi | Nowak, David J.
A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simulation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs were compared against this base case. Differences in land cover classification and tree cover between the distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to affect estimates of NO2 removal by dry deposition to trees in Baltimore.
Show more [+] Less [-]Urban woodlands: their role in reducing the effects of particulate pollution
1998
Beckett, K.P. | Freer-Smith, P.H. | Taylor, G. (School of Biological Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QG (United Kingdom))
Effects of oxidant air pollution on Pinus maximartinezii Rzedowski in the Mexico City region
1996
Hernandez Tjeda, T. | Nieta de Pascual Pola, C. (Centro Nacional de Investigacion Disciplinaria en Conservacion y Mejoramiento de Ecosistemas Forestales INIFAP (SARH) Ave. Progreso 5, Coyoacan, Mexico 04110 D.F. (Mexico))
Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal
2018
Chu, Shuangshuang | Jacobs, Douglass F. | Liao, Dandan | Liang, Liyin L. | Wu, Daoming | Chen, Peijiang | Lai, Can | Zhong, Fengdi | Zeng, Shucai
Landscape plants have great potentials in heavy metals (HMs) removal as sewage sludge compost (SSC) is increasingly used in urban forestry. We hypothesize that woody plants might perform better in HMs phytoremediation because they have greater biomass and deeper roots than herbaceous plants. We tested the differences in growth responses and HMs phytoremediation among several herbaceous and woody species growing under different SSC concentrations through pot experiments. The mixing percentage of SSC with soil at 0%, 15%, 30%, 60, and 100% were used as growth substrate for three woody (Ficus altissima Bl., Neolamarckia cadamba (Roxb.) Bosser, and Bischofia javanica Bl.) and two herbaceous (Alocasia macrorrhiza (L.) G. Don and Dianella ensifolia (L.) DC) plants. Results showed that the biomass, relative growth rate, and nutrient uptake for all plants increased significantly at each SSC concentration compared to the control; woody plants had higher biomass and nutrient use efficiency than herbaceous plants. All plants growing in SSC-amended soils accumulated appreciable amounts of HMs and reduced the contents of HMs present in the substrates. The woody plants were generally more effective than herbaceous plants in potentials of HMs phytoextraction, but A. macrorrhiza showed higher bioconcentration and translocation of Cu and Zn and D. ensifolia had higher bioconcentration and translocation of Cd than woody plants. The optimal application concentrations were 30% or less for woody plants and 15% for herbaceous plants for plant growth and ecological risk control, respectively. Intercropping suitable woody and herbaceous landscape plants in urban forestry might have promising potentials to minimize the ecological risks in the phytoremediation of SSC.
Show more [+] Less [-]