Refine search
Results 1-10 of 369
Potential urinary biomarkers in young adults with short-term exposure to particulate matter and bioaerosols identified using an unbiased metabolomic approach
2022
Li, Guang-xi | Duan, Yuan-yuan | Wang, Yi | Bian, Ling-jie | Xiong, Meng-ran | Song, Wen-pin | Zhang, Xia | Li, Biao | Dai, Yu-long | Lu, Jia-wei | Li, Meng | Liu, Zhi-guo | Liu, Shi-gang | Zhang, Li | Yao, Hong-juan | Shao, Rong-guang | Li, Liang
Numerous epidemiological studies have shown a close relationship between outdoor air pollution and increased risks for cancer, infection, and cardiopulmonary diseases. However, very few studies have investigated the potential health effects of coexposure to airborne particulate matter (PM) and bioaerosols through the transmission of infectious agents, particularly under the current circumstances of the coronavirus disease 2019 pandemic. In this study, we aimed to identify urinary metabolite biomarkers that might serve as clinically predictive or diagnostic standards for relevant diseases in a real-time manner. We performed an unbiased gas/liquid chromatography-mass spectroscopy (GC/LC-MS) approach to detect urinary metabolites in 92 samples from young healthy individuals collected at three different time points after exposure to clean air, polluted ambient, or purified air, as well as two additional time points after air repollution or repurification. Subsequently, we compared the metabolomic profiles between the two time points using an integrated analysis, along with Kyoto Encyclopedia of Genes and Genomes-enriched pathway and time-series analysis. We identified 33 and 155 differential metabolites (DMs) associated with PM and bioaerosol exposure using GC/LC-MS and follow-up analyses, respectively. Our findings suggest that 16-dehydroprogesterone and 4-hydroxyphenylethanol in urine samples may serve as potential biomarkers to predict or diagnose PM- or bioaerosol-related diseases, respectively. The results indicated apparent differences between PM- and bioaerosol-associated DMs at five different time points and revealed dynamic alterations in the urinary metabolic profiles of young healthy humans with cyclic exposure to clean and polluted air environments. Our findings will help in investigating the detrimental health effects of short-term coexposure to airborne PM and bioaerosols in a real-time manner and improve clinically predictive or diagnostic strategies for preventing air pollution-related diseases.
Show more [+] Less [-]Human biomonitoring survey (Pb, Cd, As, Cu, Zn, Mo) for urban gardeners exposed to metal contaminated soils
2022
Petit, Jérôme C.J. | Maggi, Patrick | Pirard, Catherine | Charlier, Corinne | Ruttens, Ann | Liénard, Amandine | Colinet, Gilles | Remy, Suzanne
Eighty eight adult gardeners and their relatives volunteered to provide urine and blood samples for a human biomonitoring survey among users of one of the biggest allotment garden from Wallonia, showing high trace metal(oid) concentrations in soils. The purpose was to determine if environmental levels of lead (Pb), cadmium (Cd) and arsenic (As) led to concentrations of potential health concern in the study population. Blood and urine biomarkers were compared to reference and intervention cut-off values selected from the literature. The study population exhibited (i) moderately high blood lead levels with median value of 23.1 μg/L, (ii) high urinary concentrations of speciated As (inorganic arsenic and its metabolites) with a median value of 7.17 μg/g.cr., i.e. twice the median values usually observed in general populations, and (iii) very high Cd levels in urine with a median value of 1.23 μg/L, in the range of 95th-97.5th percentiles measured in general adult populations. Biomarker levels in the study population were also mostly above those measured in adults from local populations living on contaminated soils, as reported in the current literature. All biomarkers of Pb, Cd and As showed weak to strong statistically significant correlations, pointing towards a joint environmental source to these three contaminants as being at least partially responsible for the high exposure levels observed. Urine and blood biomarkers show statistically significant associations with variables related to individual characteristics (age, smoking status, …) and Pb domestic sources (Pb pipes, cosmetics, …) but involves also behavioral and consuming habits related to gardening activities on the contaminated allotment garden. At such levels, owing to co-exposure and additive effects of Cd, As and Pb regarding renal toxicity known from literature, the study strongly suggests that this population of gardeners is at risk with respect to chronic kidney diseases.
Show more [+] Less [-]Effect of exposures to mixtures of lead and various metals on hypertension, pre-hypertension, and blood pressure: A cross-sectional study from the China National Human Biomonitoring
2022
Qu, Yingli | Lv, Yuebin | Ji, Saisai | Ding, Liang | Zhao, Feng | Zhu, Ying | Zhang, Wenli | Hu, Xiaojian | Lu, Yifu | Li, Yawei | Zhang, Xu | Zhang, Mingyuan | Yang, Yanwei | Li, Chengcheng | Zhang, Miao | Li, Zheng | Chen, Chen | Zheng, Lei | Gu, Heng | Zhu, Huijuan | Sun, Qi | Cai, Jiayi | Song, Shixun | Ying, Bo | Lin, Shaobin | Cao, Zhaojin | Liang, Donghai | Ji, John S. | Ryan, P Barry | Barr, Dana Boyd | Shi, Xiaoming
We aimed to explore the effects of mixtures of lead and various metals on blood pressure (BP) and the odds of pre-hypertension (systolic blood pressure (SBP) 120–139 mmHg, and/or diastolic blood pressure (DBP) 80–89 mmHg) and hypertension (SBP/DBP ≥140/90 mmHg) among Chinese adults in a cross-sectional study. This study included 11,037 adults aged 18 years or older from the 2017–2018 China National Human Biomonitoring. Average BP and 13 metals (lead, antimony, arsenic, cadmium, mercury, thallium, chromium, cobalt, molybdenum, manganese, nickel, selenium, and tin) in blood and urine were measured and lifestyle and demographic data were collected. Weighted multiple linear regressions were used to estimate associations of metals with BP in both single and multiple metal models. Weighted quantile sum (WQS) regression was performed to assess the relationship between metal mixture levels and BP. In the single metal model, after adjusting for potential confounding factors, the blood lead levels in the highest quartile were associated with the greater odds of both pre-hypertension (odds ratio (OR): 1.56, 95% CI: 1.22–1.99) and hypertension (OR:1.75, 95% CI: 1.28–2.40) when compared with the lowest quartile. We also found that blood arsenic levels were associated with increased odds of pre-hypertension (OR:1.31, 95% CI:1.00–1.74), while urinary molybdenum levels were associated with lower odds of hypertension (OR:0.68, 95% CI:0.50–0.93). No significant associations were found for the other 10 metals. WQS regression analysis showed that metal mixture levels in blood were significantly associated with higher SBP (β = 1.56, P < 0.05) and DBP (β = 1.56, P < 0.05), with the largest contributor being lead (49.9% and 66.8%, respectively). The finding suggests that exposure to mixtures of metals as measured in blood were positively associated with BP, and that lead exposure may play a critical role in hypertension development.
Show more [+] Less [-]Co-exposure to priority-controlled metals mixture and blood pressure in Chinese children from two panel studies
2022
Liu, Miao | Li, Meng | Guo, Wenting | Zhao, Lei | Yang, Huihua | Yu, Jie | Liu, Linlin | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhu, Kejing | Dai, Wencan | Mei, Wenhua | Zhang, Xiaomin
Metals may affect adversely cardiovascular system, but epidemiological evidence on the associations of priority-controlled metals including antimony (Sb), arsenic (As), cadmium, lead, and thallium with children's blood pressure (BP) was scarce and inconsistent. We conducted two panel studies with 3 surveys across 3 seasons among 144 and 142 children aged 4–12 years in Guangzhou and Weinan, respectively. During each seasonal survey, urine samples were collected for 4 consecutive days and BP was measured on the 4th day. We obtained 786 BP values and urinary metals measurements at least once within 4 days, while 773, 596, 612, and 754 urinary metals measurements were effective on the health examination day (Lag 0), and the 1ˢᵗ, 2ⁿᵈ, and 3ʳᵈ day preceding BP measurement (Lag 1, lag 2 and lag 3), respectively. We used linear mixed-effect models, generalized estimating equations and multiple informant models to assess the associations of individual metal at each lag day and accumulated lag day (4 days averaged, lag 0–3) with BP and hypertension, and Bayesian Kernel Machine Regression to evaluate the relations of metals mixture at lag 0–3 and BP outcomes. We found Sb was positively and consistently related to systolic BP (SBP), mean arterial pressure (MAP), and odds of having hypertension within 4 days, which were the strongest at lag 0 and declined over time. And such relationships at lag 0–3 showed in a dose-response manner. Meanwhile, Sb was the only contributor to the relations of mixture with SBP, MAP, and odds of having hypertension. Also, synergistic interaction between Sb and As was significant. In addition, modification effect of passive smoking status on the association of Sb and SBP was more evident in passive smokers. Accordingly, urinary Sb was consistently and dose-responsively associated with increased BP and hypertension, of which Sb was the major contributor among children.
Show more [+] Less [-]High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort
2022
Tan, Youran | Barr, Dana Boyd | Ryan, P Barry | Fedirko, Veronika | Sarnat, Jeremy A. | Gaskins, Audrey J. | Chang, Che-Jung | Tang, Ziyin | Marsit, Carmen J. | Corwin, Elizabeth J. | Jones, Dean P. | Dunlop, Anne L. | Liang, Donghai
Exposure to tobacco smoke during pregnancy has been associated with a series of adverse reproductive outcomes; however, the underlying molecular mechanisms are not well-established. We conducted an untargeted metabolome-wide association study to identify the metabolic perturbations and molecular mechanisms underlying the association between cotinine, a widely used biomarker of tobacco exposure, and adverse birth outcomes. We collected early and late pregnancy urine samples for cotinine measurement and serum samples for high-resolution metabolomics (HRM) profiling from 105 pregnant women from the Atlanta African American Maternal-Child cohort (2014–2016). Maternal metabolome perturbations mediating prenatal tobacco smoke exposure and adverse birth outcomes were assessed by an untargeted HRM workflow using generalized linear models, followed by pathway enrichment analysis and chemical annotation, with a meet-in-the-middle approach. The median maternal urinary cotinine concentrations were 5.93 μg/g creatinine and 3.69 μg/g creatinine in early and late pregnancy, respectively. In total, 16,481 and 13,043 metabolic features were identified in serum samples at each visit from positive and negative electrospray ionization modes, respectively. Twelve metabolic pathways were found to be associated with both cotinine concentrations and adverse birth outcomes during early and late pregnancy, including tryptophan, histidine, urea cycle, arginine, and proline metabolism. We confirmed 47 metabolites associated with cotinine levels, preterm birth, and shorter gestational age, including glutamate, serine, choline, and taurine, which are closely involved in endogenous inflammation, vascular reactivity, and lipid peroxidation processes. The metabolic perturbations associated with cotinine levels were related to inflammation, oxidative stress, placental vascularization, and insulin action, which could contribute to shorter gestations. The findings will support the further understanding of potential internal responses in association with tobacco smoke exposures, especially among African American women who are disproportionately exposed to high tobacco smoke and experience higher rates of adverse birth outcomes.
Show more [+] Less [-]Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach
2022
Kim, Da-Hye | Jeong, Yunsun | Belova, Lidia | Roggeman, Maarten | Fernández, Sandra F. | Poma, Giulia | Rémy, Sylvie | Verheyen, Veerle J. | Schoeters, Greet | van Nuijs, Alexander L.N. | Covaci, Adrian
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents’ urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53–80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1–3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
Show more [+] Less [-]Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides
2022
Stadler, Katrina | Li, Xueshu | Liu, Buyun | Bao, Wei | Wang, Kai | Lehmler, Hans-Joachim
Toxicological and epidemiological studies implicate exposure to dithiocarbamate (DTC) fungicides in adverse health outcomes. However, there is limited information about human exposure to these chemicals. This systematic review determined to which extent human populations worldwide, including children, pregnant women, and adults, are exposed environmentally or occupationally to DTC pesticides and how these exposures compare to the NHANES 2003–2008 population, using urinary ETU data as an outcome measure. PubMed, Embase, and SciFinder were searched using the keywords “ethylenethiourea” or CAS No.: 96-45-7, and urine or urinary. Duplicates and irrelevant studies were removed from the search results based on predetermined exclusion criteria. This screening process identified 17 relevant papers. One additional paper was found independent of this search. Data from studies were extracted using a pre-established data collection form. Ten, two, and five manuscripts reported urinary levels in environmentally exposed adults, children, and pregnant women, respectively. Median ETU levels ranged from 0.15 to 4.7 μg/g creatinine in adults (1994–2017), 0.24–0.83 μg/g creatinine in children (2011), and 2.6–5.24 ng/ml in pregnant women (2011). Eight studies reported urinary ETU levels in mostly agriculturally exposed populations, with median ETU levels ranging from 0.42 to 49.6 μg/g creatinine (1999–2011). With one exception, all studies were conducted between 1994 and 2011. ETU levels in the NHANES 2003–2008 population appeared to be generally lower than most studies identified in this review. This finding suggests that, historically, DTC fungicide exposures in the general population of high-income countries, such as the US, were low, whereas agricultural populations may have experienced higher exposure. Unfortunately, more recent exposure data are missing, especially in countries where DTC pesticides are not being phased out.
Show more [+] Less [-]The association of co-exposure to polycyclic aromatic hydrocarbon and phthalates with blood cell-based inflammatory biomarkers in children: A panel study
2022
Zhao, Lei | Liu, Miao | Liu, Linlin | Guo, Wenting | Yang, Huihua | Chen, Shuang | Yu, Jie | Li, Meng | Fang, Qin | Lai, Xuefeng | Yang, Liangle | Zhang, Xiaomin
The association of co-exposure to polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) with blood cell-based inflammatory biomarkers is largely unknown. We conducted a panel study of 144 children aged 4–12 years, with up to 3 repeated visits across 3 seasons. For each visit, we collected the first-morning urine for 4 consecutive days and fasting blood on the day of physical examination. We developed a gas chromatography/tandem mass spectrometry method to detect the metabolites of 10 PAHs (OH-PAHs) and 10 PAEs (mPAEs) in urine samples. We employed linear mixed-effects models to evaluate the individual associations of each OH-PAH and mPAE with blood cell-based inflammatory biomarkers over different lag times. Bayesian kernel machine regression (BKMR) and quantile g-computation were used to evaluate the overall associations of OH-PAHs and mPAEs mixtures with blood cell-based inflammatory biomarkers. After multiple adjustments, we found positive associations of summed hydroxylphenanthrene (∑OHPHE), summed OH-PAHs, and mono-n-butyl phthalate with inflammatory biomarkers such as neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the systemic immune-inflammation index (SII) at lag 0 (the day of physical examination). Each 1% increase in ∑OHPHE was related to a 0.18% (95% confidence interval: 0.10%, 0.25%) increase in SII, which was the strongest among the above associations. The results of BKMR and quantile g-computation suggested that co-exposure to PAHs and PAEs mixture was associated with an elevated white blood cell count, neutrophil count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII, to which ∑OHPHE and 1-hydroxypyrene (1-OHPYR) might be the major contributors. In addition, gender and age modified the associations of ∑OHPHE and 1-OHPYR with inflammatory biomarkers, where girls and younger children were more susceptible. In conclusion, co-exposure to PAHs and PAEs was associated with elevated inflammation in children, in which ∑OHPHE and 1-OHPYR might play important roles.
Show more [+] Less [-]Exposure to fine particulate matter-bound polycyclic aromatic hydrocarbons, male semen quality, and reproductive hormones: The MARCHS study
2021
Chen, Qing | Wang, Furong | Yang, Huan | Wang, Xiaogang | Zhang, Aihua | Ling, Xi | Li, Lianbing | Zou, Peng | Sun, Lei | Huang, Linping | Chen, Hongqiang | Ao, Lin | Liu, Jinyi | Cao, Jia | Zhou, Niya
Exposure to outdoor fine particulate matter (PM₂.₅)-bound polycyclic aromatic hydrocarbons (PAHs) is linked to reproductive dysfunction. However, it is unclear which component of PAHs is responsible for the adverse outcomes. In the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study, we measured the exposure levels of 16 PAHs by collecting air PM₂.₅ particles and assessed eight PAHs metabolites from four parent PAHs, including naphthalene, fluorene, phenanthrene, and pyrene in urine samples. We investigated compositional profiles and variation characteristics for 16 PAHs in PM₂.₅, and then assessed the association between PAHs exposure and semen routine parameters, sperm chromatin structure, and serum hormone levels in 1452 samples. The results showed that naphthalene (95% CI: −17.989, −8.101), chrysene (95% CI: −64.894, −47.575), benzo[a]anthracene (95% CI: −63.227, −45.936) and all the high molecular weight (HMW) PAHs in PM₂.₅ were negatively associated with sperm normal morphology. Most of the low molecular weight (LMW) PAHs, such as acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, ∑LMW PAHs and ∑16 PAHs, were correlated with increased sperm motility (all corrected P < 0.05). On the other hand, sperm normal morphology was all negatively associated with urinary metabolites of ∑OH-Nap (95% CI: −5.611, −0.536), ∑OH-Phe (95% CI: −5.741, −0.957), and ∑OH-PAHs (95% CI: −5.274, −0.361). Urinary concentrations of ∑OH-PAHs were found to be negatively associated with sperm high DNA stainability (HDS) (P = 0.023), while ∑OH-Phe were negatively associated with serum testosterone level and sperm HDS (P = 0.004). Spearman correlation analysis showed that except for the urinary OH-Nap metabolites, the rest of the urinary OH-PAHs metabolites were negatively correlated with their parent PAHs in air. The results of this study suggest that various PAHs’ components may affect reproductive parameters differently. Inhalation of PAHs in air, especially HMW PAHs, may be a potential risk factor for male reproductive health.
Show more [+] Less [-]Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong
2021
Li, Na | Ying, Guang-Guo | Hong, Huachang | Deng, Wen-Jing
Seven perfluorinated and polyfluorinated substances (PFASs), namely perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoro-1,10-decanedicarboxylic acid (PFDDA), were evaluated in urine and hair samples from children (age: 4–6 years, N = 53), airborne particles sampled at 17 kindergartens, and tap water and bottled water samples. All samples were collected in Hong Kong. The analytical results suggested widespread PFAS contamination. All target PFASs were detected in at least 32% of urine samples, with geometric mean (GM) concentrations ranging from 0.18 to 2.97 ng/L, and in 100% of drinking water samples at GM concentrations of 0.18–21.1 ng/L. Although PFOS and PFDDA were not detected in hair or air samples, the other target PFASs were detected in 48–70% of hair samples (GM concentrations: 2.40–233 pg/g) and 100% of air samples (GM concentrations: 14.8–536.7 pg/m³). In summary, the highest PFAS concentrations were detected in airborne particles measured in kindergartens. PFOA was the major PFAS detected in hair, urine, and drinking water samples, while PFOA, PFDA, and PFHpA were dominant in airborne particles. Although a significant difference in PFAS concentrations in hair samples was observed between boys and girls (p < .05), no significant sex-related difference in urinary PFAS or paired PFAS (hair/urine) concentrations was observed.
Show more [+] Less [-]