Refine search
Results 1-10 of 91
Effects-based monitoring of bioactive compounds associated with municipal wastewater treatment plant effluent discharge to the South Platte River, Colorado, USA
2021
Cavallin, Jenna E. | Beihoffer, Jon | Blackwell, Brett R. | Cole, Alexander R. | Ekman, Drew R. | Hofer, Rachel | Jastrow, Aaron | Kinsey, Julie | Keteles, Kristen | Maloney, Erin M. | Parman, Jordan | Winkelman, Dana L. | Villeneuve, Daniel L.
Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17β-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARɣ activity, there were no significant effects on PPARɣ-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.
Show more [+] Less [-]Biological responses of shoal flounder (Syacium gunteri) to toxic environmental pollutants from the southern Gulf of Mexico
2020
Quintanilla-Mena, Mercedes | Gold-Bouchot, Gerardo | Zapata-Pérez, Omar | Rubio-Piña, Jorge | Quiroz-Moreno, Adriana | Vidal-Martínez, Víctor Manuel | Aguirre-Macedo, Ma Leopoldina | Puch-Hau, Carlos
The Gulf of Mexico (GoM) is exposed to a diversity of contaminants, such as hydrocarbons and heavy metal(oid)s, either from natural sources or as a result of uncontrolled coastal urbanisation and industrialisation. To determine the effect of these contaminants on the marine biota along the Mexican GoM, the biological responses of the shoal flounder Syacium gunteri, naturally exposed, were studied. The study area included all the Mexican GoM, which was divided into three areas: West-southwest (WSW), South-southwest (SSW) and South-southeast (SSE). The biological responses included the global DNA methylation levels, the expression of biomarker genes related to contaminants (cytochrome P450 1A, glutathione S-transferase, glutathione reductase, glutathione peroxidase, catalase, and vitellogenin), histopathological lesions and PAH metabolites in bile (hydroxynaphthalene, hydroxyphenanthrene, hydroxypyrene and Benzo[a]pyrene). The correlation between the biological responses and the concentration of contaminants (hydrocarbons and metal(oid)s), present in both sediments and organisms, were studied. The shoal flounders in WSW and SSW areas presented higher DNA hypomethylation, less antioxidative response and biotransformation gene expression and a higher concentration of PAH metabolites in bile than SSE area; those responses were associated with total hydrocarbons and metals such as chromium (Cr). SSE biological responses were mainly associated with the presence of metals, such as cadmium (Cd) and copper (Cu), in the tissue of shoal flounders. The results obtained on the physiological response of the shoal flounder can be used as part of a permanent active environmental surveillance program to watch the ecosystem health of the Mexican GoM.
Show more [+] Less [-]Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations
2020
Liu, Zhiquan | Cai, Mingqi | Wu, Donglei | Yu, Ping | Jiao, Yang | Jiang, Qichen | Zhao, Yunlong
The biological effects of nanoplastics are a growing concern. However, most studies have focused on exposure to high concentrations or short-term exposure. The potential effects of exposure to low environmental nanoplastic concentrations over the long-term and across multiple generations remain unclear. In the present study, Daphnia pulex was exposed over three 21-day generations to a typical environmental nanoplastic concentration (1 μg/L) and the effects were investigated at physiological (growth and reproduction), gene transcription and enzyme activity levels. Chronic exposure did not affect the survival or body length of D. pulex, whereas the growth rate and reproduction were influenced in the F2 generation. Molecular responses indicated that environmental nanoplastic concentrations can modulate the response of antioxidant defenses, vitellogenin synthesis, development, and energy production in the F0-F1 generations, and prolongation resulted in inhibitory effects on antioxidant responses in F2 individuals. Some recovery was observed in the recovery group, but reproduction and stress defenses were significantly induced. Taken together, these results suggest that D. pulex recovery from chronic exposure to nanoplastic may take several generations, and that nanoplastics have potent long-term toxic effects on D. pulex. The findings highlight the importance of multigenerational and chronic biological evaluations to assess risks of emerging pollution.
Show more [+] Less [-]Reproductive dysfunction linked to alteration of endocrine activities in zebrafish exposed to mono-(2-ethylhexyl) phthalate (MEHP)
2020
Park, Chang-Beom | Kim, Ko-ŭn | Kim, Yŏng-jun | On, Jiwon | Pak, Ch'ang-gyun | Kwon, Young-Sang | Pyo, Heesoo | Yeom, Dong-Huk | Cho, Sung Hee
This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 μg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 μg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17β-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.
Show more [+] Less [-]Combined effects of increased temperature and levonorgestrel exposure on zebrafish female liver, using stereology and immunohistochemistry against catalase, CYP1A, HSP90 and vitellogenin
2019
Cardoso, P.G. | Resende-de-Oliveira, R. | Rocha, E.
Climate change and pharmaceuticals contamination constitute two of the most relevant stressors on the aquatic ecosystems, however, there is a huge lack of information regarding the interactive effects of both stressors. For that, a mesocosm experiment was implemented where adult zebrafish were exposed to combined temperature and the progestin levonorgestrel (LNG) for 21 days. Considering that the liver is one of the organs where there is a greater metabolization and accumulation of toxicants, the main objective of this work was to assess the effects of both stressors on the female zebrafish hepatocytes morphology and functioning, through stereological and immunohistochemical techniques.Our results revealed an increase of coefficient of variation of the number distribution of hepatocytes volume (CVN(υ)) for individuals exposed to LNG, which denotes an increase of the hepatocytes size variability and is suggestive of functional impacts. This was corroborated by the signs of increased glycogen content with the exposure to increased LNG concentrations and temperature, indicating modified hepatocyte glycogen metabolism. Such disturbances can be considered indicators that the fish had to deal with impacts caused by the stress factors.Regarding the immunoreactivity, from the four proteins selected (catalase, CYP1A, HSP90 and Vtg), just in two of them (catalase and Vtg) were observed some responses to both stressors. For catalase there was a hormetic response, in which exposure to lower LNG concentrations caused a significant higher positive immunostaining than under higher LNG concentrations. While, for Vtg, significant effects of temperature and LNG existed, in which a decline in Vtg immunostaining was observed with exposure to higher temperature and lower LNG concentrations. These results should be seen as a warning sign about fine impacts of multiple stressors, such as temperature and progestogens, on the structure and functioning of zebrafish liver and potentially in other aquatic organisms, and on their health implications.
Show more [+] Less [-]Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification
2019
Maulvault, Ana Luísa | Camacho, Carolina | Barbosa, Vera | Alves, Ricardo | Anacleto, Patrícia | Cunha, Sara C. | Fernandes, José O. | Pousão-Ferreira, Pedro | Paula, José Ricardo | Rosa, Rui | Diniz, Mario | Marques, António
Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various personal care products. Its frequent detection in marine ecosystems, along with its physical and chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by biota and, therefore, eliciting various toxicological responses. Yet, TCS's mechanisms of bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive effects with climate change-related stressors (e.g. warming and acidification), as both TCS chemical behaviour and marine species metabolism/physiology can be strongly influenced by the surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure (15.9 μg kg−1 dw), seawater warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼ +1000 μatm, equivalent to ΔpH = −0.4 units). Muscle was the primary organ of TCS bioaccumulation, and climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were significantly altered by the co-exposure to acidification and/or warming, through either the enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized the need to further understand the interactive effects between pollutants and abiotic conditions, as such knowledge enables a better estimation and mitigation of the toxicological impacts of climate change in marine ecosystems.
Show more [+] Less [-]The intersex phenomenon in Sarotherodon melanotheron from Lagos lagoon (Nigeria): Occurrence and severity in relation to contaminants burden in sediment
2019
Adeogun, Aina O. | Ibor, Oju R. | Chukwuka, Azubuike V. | Regoli, Francesco | Arukwe, Augustine
The correlation between endocrine active contaminants in the environment and alterations in reproductive development of Sarotherodon melanotheron from Lagos lagoon has been investigated. Sediment and a total of 155 fish (74 males and 81 females) were collected between November 2014–March 2015 from selected contaminated sites (Ikorodu, Oworonshoki, Makoko and Idumota) and a putative control site (Igbore) along the lagoon. Sediment contaminant analysis revealed, significantly higher concentration of lindane, dieldrin, 4-iso-nonylphenol, 4-t-octylphenol and monobutyltin cation at the contaminated sites. Examination of gross morphological and histological changes of fish gonads showed a 27.4% prevalence of intersex in the sampled fish, of which 78% were males (testes-ova) and 22% were females (ovo-testis). Quantitative PCR (qPCR) of liver transcripts revealed the presence of vitellogenin (vtg) levels in male fish from contaminated sites. Zona radiata proteins (zrp) mRNA levels were significantly higher in females, compared to male fish. In general, significantly lower vtg and zrp transcripts levels were recorded at Igbore (control site), compared with contaminated sites. Principal component analysis (PCA) showed site and sex relationship in biological responses and contaminants, including trace metals, demonstrating that measured endocrine responses in fish were associated with contaminant burden in sediment. In addition, positive relationships were observed in male fish from Idumota, Oworonshoki and Ikorodu with vtg and dieldrin/4-iso-nonyphenol, with higher levels in male fish, compared to females. Further, contaminants from the Makoko, Oworonshoki and Ikorodu sites were positively associated with higher GSI and zrp in females. More importantly, the severity of intersex and changes in vtg transcripts imply a progressive feminization of male fish with concomitant alteration in the reproductive health of fish inhabiting the Lagos lagoon.
Show more [+] Less [-]Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens
2018
Amaral, Karina Dias | Martínez, Luis Carlos | Pereira Lima, Maria Augusta | Serrão, José Eduardo | Della Lucia, Terezinha M. C.
Leaf-cutting ants are important pests of forests and agricultural crops in the Neotropical region. Atta sexdens colonies can be composed of thousands of individuals, which form a highly complex society with a single reproductive queen. Successful control of this species is achieved only if the queen is affected. Few data are available on the lethal or sublethal effects of toxic compounds on leaf-cutting ant queens. Azadirachtin has been claimed as an effective biopesticide for insect control, but its action on leaf-cutting ants has been little explored. This study shows that azadirachtin affects oviposition in A. sexdens queens, impairing egg development by decreasing protein reserves. Azadirachtin inhibits the synthesis of vitellogenin, the major yolk protein precursor. The negative effects of azadirachtin on the reproduction of leaf-cutting ant queens suggest a potential use for the control of these insects.
Show more [+] Less [-]Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China: Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus
2018
Wang, Song | Zhu, Zeliang | He, Jiafa | Yue, Xiaoya | Pan, Jianxiong | Wang, Zaizhao
This study investigated selected steroidal and phenolic endocrine disrupting compounds (EDCs) in the surface water of the Bahe River (China) using gas chromatography mass spectrometry (GC-MS). Their effect on the wild sharpbelly Hemiculter leucisculus was investigated. The concentrations of 4-t-octylphenol, nonylphenol, bisphenol-A, estrone, 17 β-estradiol, 17 α-Ethinylestradiol, and estriol were up to 126.0, 634.8, 1573.1, 55.9, 23.9, 31.5, and 5.2 ng L⁻¹ in the surface water, and up to 26.4, 103.5, 146.9, 14.2, 9.3, 13.8, and 1.3 ng g⁻¹ in the fish muscle tissue, respectively. High estrogen equivalent levels and hazard quotients were found in the middle and lower reaches of the river, and the pollution in these regions caused enhanced growth conditions, inhibition of gonad growth, and suppression of spermatogenesis in H. leucisculus. The up-regulation of Vitellogenin mRNA expression in male fish, collected from relatively heavily EDCs contaminated areas, indicates a potential estrogenic effect. The differential expression profiles of genes related to steroidogenesis at all sampling sites suggests that these endpoints may play an important role for the pollution monitoring of estrogenic EDCs in the Bahe River.
Show more [+] Less [-]Exposure to cocaine and its main metabolites altered the protein profile of zebrafish embryos
2018
Parolini, Marco | Bini, Luca | Magni, Stefano | Rizzo, Alessandro | Ghilardi, Anna | Landi, Claudia | Armini, Alessandro | Del Giacco, Luca | Binelli, Andrea
Illicit drugs have been identified as emerging aquatic pollutants because of their widespread presence in freshwaters and potential toxicity towards aquatic organisms. Among illicit drug residues, cocaine (COC) and its main metabolites, namely benzoylecgonine (BE) and ecgonine methyl ester (EME), are commonly detected in freshwaters worldwide at concentration that can induce diverse adverse effects to non-target organisms. However, the information of toxicity and mechanisms of action (MoA) of these drugs, mainly of COC metabolites, to aquatic species is still fragmentary and inadequate. Thus, this study was aimed at investigating the toxicity of two concentrations (0.3 and 1.0 μg/L) of COC, BE and EME similar to those found in aquatic ecosystems on zebrafish (Danio rerio) embryos at 96 h post fertilization through a functional proteomics approach. Exposure to COC and both its metabolites significantly altered the protein profile of zebrafish embryos, modulating the expression of diverse proteins belonging to different functional classes, including cytoskeleton, eye constituents, lipid transport, lipid and energy metabolism, and stress response. Expression of vitellogenins and crystallins was modulated by COC and both its main metabolites, while only BE and EME altered proteins related to lipid and energy metabolism, as well as to oxidative stress response. Our data confirmed the potential toxicity of low concentrations of COC, BE and EME, and helped to shed light on their MoA on an aquatic vertebrate during early developmental period.
Show more [+] Less [-]