Refine search
Results 1-10 of 35
Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land
2017
Nicholson, Fiona | Bhogal, Anne | Cardenas, L. (Laura) | Chadwick, Dave | Misselbrook, T. (Tom) | Rollett, A. (Alison) | Taylor, Matt | Thorman, Rachel | Williams, John
The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any ‘new’ material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH3) and nitrous oxide (N2O) emissions to air and nitrate (NO3−) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1–2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45± 0.15%). Overwinter NO3− leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO3− leaching from green and green/food composts were low, indicating that in these terms compost can be considered as an ‘environmentally benign’ material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture.
Show more [+] Less [-]Interspecies variation in the risks of metals to bats
2015
Hernout, Béatrice V. | Pietravalle, Stéphane | Arnold, Kathryn E. | McClean, Colin J. | Aegerter, James | Boxall, Alistair B.A.
A modeling framework was used to assess the risk of four metals to UK bat species. Eight species of bats were predicted to be “at risk” from one or more of the metals in over 5% of their ranges. Species differed significantly in their predicted risk. Contamination by Pb was found to pose the greatest risk, followed by Cu, Cd and Zn. A sensitivity analysis identified the proportion of invertebrates ingested as most important in determining the risk. We then compared the model predictions with a large dataset of metals concentrations in the tissues (liver, kidney) of Pipistrellus sp. from across England and Wales. Bats found in areas predicted to be the most “at risk” contained higher metal concentrations in their tissues than those found in areas predicted “not at risk” by the model. Our spatially explicit modeling framework provides a useful tool for further environmental risk assessment studies for wildlife species.
Show more [+] Less [-]Migration of heavy metals in soil as influenced by compost amendments
2010
Farrell, Mark | Perkins, William T. | Hobbs, Phil J. | Griffith, Gareth W. | Jones, D. L. (Davey L)
Soils contaminated with heavy metals can pose a major risk to freshwaters and food chains. In this study, the success of organic and inorganic intervention strategies to alleviate toxicity in a highly acidic soil heavily contaminated with As, Cu, Pb, and Zn was evaluated over 112 d in a mesocosm trial. Amelioration of metal toxicity was assessed by measuring changes in soil solution chemistry, metal leaching, plant growth, and foliar metal accumulation. Either green waste- or MSW-derived composts increased plant yield and rooting depth, reduced plant metal uptake, and raised the pH and nutrient status of the soil. We conclude that composts are well suited for promoting the re-vegetation of contaminated sites; however, care must be taken to ensure that very short-term leaching pulses of heavy metals induced by compost amendment are not of sufficient magnitude to cause contamination of the wider environment. Composts increase rooting depth and vegetation growth over inorganic amendment in an acidic, contaminated soil.
Show more [+] Less [-]Trends in surface water chemistry in afforested Welsh catchments recovering from acidification, 1991–2012
2019
Broadmeadow, S.B. | Nisbet, T.R. | Forster, J.
A key criterion of the UK Government's policy on sustainable forest management is safeguarding the quality and quantity of water. Forests and forestry management practices can have profound effects on the freshwater environment. Poor forest planning or management can severely damage water resources at great cost to other water users; in contrast good management that restores and maintains the natural functions of woodland can benefit the whole aquatic ecosystem.Forests and forest management practices can affect surface water acidification. Monitoring of water chemistry in ten forest and two moorland acid-sensitive catchments in upland Wales commenced in 1991. The streams were selected to supplement the United Kingdom Upland Waters Monitoring Network (UWMN) with additional examples of afforested catchments. Analysis of 22 years of water chemistry data revealed trends indicative of recovery from acidification. Excess sulphate exhibited a significant coherent decline, accompanied by increases in pH and “charge-balance based” acid neutralising capacity (CB-ANC). Alkalinity and “alkalinity-based” acid neutralising capacity (AB-ANC) exhibited fewer trends, possibily due to the variable responses of the organic - carbonate species to increasing pH in these low alkalinity streams. Whilst total anthropogenic acidity declined, dissolved organic carbon and Nitrate-Nitrogen (NNO₃) concentrations have risen, and the contribution of NNO₃ to acidification has increased.Between-stream variability was analysed using Principal Component Analysis of the trend slopes. Hierarchical clustering of the changes in stream water chemistry indicated three distinct clusters with no absolute distinction between moorland and forest streams. Redundancy analysis was used to test for significant site-specific variables that explained differences in the trend slopes, with rainfall, crop age, base cation concentration and forest cover being significant explanatory variables.
Show more [+] Less [-]Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?
2011
Tosh, D.G. | McDonald, R.A. | Bearhop, S. | Lllewellyn, N.R. | Fee, S. | Sharp, E.A. | Barnett, E.A. | Shore, R.F.
Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations.
Show more [+] Less [-]Diet shifts during egg laying: Implications for measuring contaminants in bird eggs
2010
Morrissey, Christy A. | Elliott, John E. | Ormerod, Stephen J.
We combined stable isotope tracers of blood plasma, blood cells and egg contents with faecal analysis during pre-breeding and egg laying phases in two dipper species Cinclus cinclus and Cinclus mexicanus to determine the occurrence of dietary shifts during egg production and to assess consequences for egg contaminant loads. In both species, changes in δ13C (C. cinclus) or δ15N (C. mexicanus) in female plasma relative to red blood cells indicated a dietary shift during laying that was not observed in males. Eurasian dippers increased prey consumption as breeding approached, shifting from primarily trichopteran insect larvae to ephemeropterans and plecopterans. In American dippers, egg-laying females switched to feeding at a higher trophic level by consuming more fish. Eggs derived from higher trophic level diets contained more mercury (American dipper), polychlorinated biphenyls and some organochlorines, especially DDT metabolites. The results demonstrate how dietary changes during egg laying accompany the demands for egg production with consequences for contaminant deposition in avian eggs. Changes in laying diet influences contaminant deposition in bird eggs.
Show more [+] Less [-]Biological and anthropogenic predictors of metal concentration in the Eurasian otter, a sentinel of freshwater ecosystems
2020
Brand, Anne-Fleur | Hynes, Juliet | Walker, Lee A. | Glόria Pereira, M. | Lawlor, Alan J. | Williams, Dick (Richard J.) | Shore, Richard F. | Chadwick, Elizabeth A.
Toxic metals have been linked to a range of adverse health effects in freshwater organisms. However, for higher vertebrates, there is little understanding of the large-scale drivers of exposure. We quantified toxic metal/semi-metal concentrations in a sentinel freshwater top predator, the Eurasian otter (Lutra lutra), across England and Wales, and determined how this varied with key natural and anthropogenic factors. We related liver concentrations in 278 otters that died between 2006 and 2017 to habitat biogeochemistry, proximity to point source contamination and to biological characteristics (length, sex, condition). Evidence for any positive association with putative anthropogenic sources (mining, human population, known discharges) was weak or lacking in nearly all cases, with the exception of a positive association between lead and human population density. Despite concerns that burgeoning use of nanosilver in consumer products might increase silver concentrations in waste waters, there was no increase over time. Spatial variation in soil/sediment pH, precipitation, and soil calcium oxide are indicated as significant predictors of metal concentrations in otters (higher cadmium and silver in areas with lower pH and higher rainfall, and higher chromium and lead in areas of lower calcium oxide). Liver chromium and nickel concentrations declined significantly over time (Cr 0.030 ± 1.2 to 0.015 ± 1.3 μg/g dry weight, Ni 0.0038 ± 1.2 to 0.00068 ± 1.5 μg/g, between 2006–2009 and 2014–2017), but other metals showed no temporal change. Biotic associations were important, with age related accumulation indicated for mercury and cadmium (as well as interactions with body condition). Our results suggest that larger-scale geochemical and hydrological processes are important in determining metal exposure in otters, and we provide an indication of risk factors that may be of relevance for freshwater vertebrates in other countries with well-developed water pollution management.
Show more [+] Less [-]Impact of climate change and population growth on a risk assessment for endocrine disruption in fish due to steroid estrogens in England and Wales
2015
Keller, V.D.J. | Lloyd, P. | Terry, J.A. | Williams, R.J.
In England and Wales, steroid estrogens: estrone, estradiol and ethinylestradiol have previously been identified as the main chemicals causing endocrine disruption in male fish. A national risk assessment is already available for intersex in fish arising from estrogens under current flow conditions. This study presents, to our knowledge, the first set of national catchment-based risk assessments for steroid estrogen under future scenarios. The river flows and temperatures were perturbed using three climate change scenarios (ranging from relatively dry to wet). The effects of demographic changes on estrogen consumption and human population served by sewage treatment works were also included. Compared to the current situation, the results indicated increased future risk:the percentage of high risk category sites, where endocrine disruption is more likely to occur, increased. These increases were mainly caused by changes in human population. This study provides regulators with valuable information to prepare for this potential increased risk.
Show more [+] Less [-]Detecting atmospheric pollution in surface soils using magnetic measurements: A reappraisal using an England and Wales database
2009
Blundell, A. | Hannam, J.A. | Dearing, J.A. | Boyle, J.F.
Industrial activity such as burning of fossil fuels produces magnetically enhanced particulates. These particulates consist of coarse-grained multidomain and stable single domain magnetic minerals. Two threshold values of low field magnetic susceptibility (XLF) and frequency dependent susceptibility percentage (XFD%) discriminate ferrimagnetic minerals of these sizes and can act as a tracer of magnetic pollution. Application of the thresholds to a magnetic topsoil data set (n = 5656 across England and Wales) revealed 637 samples potentially dominated by pollution particulates. The magnetic parameters of these samples display a negative correlation with distance to urban areas and positive correlations with metals associated with anthropogenic activity (Cu, Pb, and Zn). Results of experimentation with threshold values and modelling of magnetic anomalies suggest that regional factors such as geology and potential for pedogenic secondary magnetic enhancement should be considered when setting threshold values.
Show more [+] Less [-]Riboflavin content of coelomocytes in earthworm (Dendrodrilus rubidus) field populations as a molecular biomarker of soil metal pollution
2009
Płytycz, Barbara | Lis-Molenda, Urszula | Cygal, Malgorzata | Kielbasa, Edyta | Grebosz, Anna | Duchnowski, Michal | Andre, Jane | Morgan, A John
The effect of Pb + Zn on coelomocyte riboflavin content in the epigeic earthworm Dendrodrilus rubidus inhabiting three metalliferous soils and one reference soil was measured by flow cytometry and spectrofluorimetry. A reciprocal polluted <-> unpolluted worm transfer experiment (4-week exposure) was also performed. High proportions of autofluorescent eleocytes were counted in worms from all localities, but intense riboflavin-derived autofluorescence was detectable only in reference worm eleocytes. Other findings were: (i) fluorophore(s) other than riboflavin is/are responsible for eleocyte autofluorescence in residents of metalliferous soils; (ii) riboflavin content was reduced in the eleocytes of worms transferred from unpolluted to metal-polluted soil; (iii) the riboflavin content of D. rubidus eleocytes is a promising biomarker of exposure; (iv) COII mitochondrial genotyping revealed that the reference population is genetically distinct from the three mine populations; (v) metal exposure rather than genotype is probably the main determinant of inter-population differences in eleocyte riboflavin status. Soil metal pollution reduces riboflavin content of earthworm eleocytes.
Show more [+] Less [-]