Refine search
Results 1-10 of 156
Effects of red earthworms (Eisenia fetida) on leachability of lead minerals in soil
2018
Kavehei, Armin | Hose, Grant C. | Gore, Damian B.
Contamination of soils by metals and metalloids is an important environmental problem in many residential and industrial sites around the world. Lead is a common contaminant, which enters the soil through mining, industrial activities and waste disposal. A range of technologies can be used to remediate soil lead, however most remediation technologies adversely affect the environment and particularly soil biota. We have assessed the efficacy of vermiremediation (the use of earthworms for remediation) to reduce water extractable lead concentrations in soil. Earthworms were introduced to a sandy soil spiked with the common lead minerals cotunnite (PbCl2), cerussite (PbCO3), massicot (PbO) or galena (PbS) at 1000 mg (Pb) kg−1. Lead concentrations in pore water extracted during the experiment were not significantly different in contaminated soil with and without worms. However, concentrations of lead in water from a deionised water extraction (washing) of contaminated soil were significantly lower in soil with earthworms than in soil without. Earthworms accumulated on average (±1 standard deviation) 276 ± 118, 235 ± 66, 241 ± 58 and 40 ± 30 mg kg−1 (dry weight of earthworms) of lead in their bodies, in PbCl2, PbCO3, PbO and PbS-dosed soils, respectively. During the experiment, earthworms lost weight in all contaminated soils, except those containing PbS.
Show more [+] Less [-]The influence of land use on source apportionment and risk assessment of polycyclic aromatic hydrocarbons in road-deposited sediment
2017
Zhang, Jin | Wu, Junwei | Hua, Pei | Zhao, Zhonghua | Wu, Lei | Fan, Gongduan | Bai, Yun | Kaeseberg, Thomas | Krebs, Peter
The pollution load of urban runoff is boosted due to the washing away of road-deposited sediment (RDS). Therefore, a source-oriented mitigation strategy is essential to integrated stormwater management. This study showcases the influence of land use dependent source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in RDS. Samples were collected from areas of different land uses, including commercial city centre, highway, residential rural and campus areas. According to the positive matrix factorisation (PMF) receptor model, different primary sources were identified at different land use areas. Generally, potential sources of gasoline- and diesel-powered engine emissions and other pyrogenic sources of biomass, coal, and wood combustions were identified as main sources of PAH content in RDS. The source specific risks posed by PAHs at different land uses were further estimated by the incremental lifetime cancer risk (ILCR). This shows that the mean ILCRs of the total cancer risk for children and adults at the given land uses were lower than the baseline value of an acceptable risk. However, the potential exposure risk to RDS adsorbed PAHs for children was considerably higher than that for adults. Vehicular emissions and wood combustion were the major contributors to the cancer risk with average contributions of 57 and 29%, respectively.
Show more [+] Less [-]Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid
2017
Clemente, Zaira | Castro, Vera Lúcia S.S. | Franqui, Lidiane S. | Silva, Cristiane A. | Martinez, Diego Stéfani T.
This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials’ bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.
Show more [+] Less [-]Microplastics in sediments of the Changjiang Estuary, China
2016
Peng, Guyu | Zhu, Bangshang | Yang, Dongqi | Su, Lei | Shi, Huahong | Li, Daoji
Microplastics are plastics that measure less than 5 mm in diameter. They enter the marine environment as primary sources directly from industrial uses, as well as secondary sources resulting from the degradation of large plastic debris. To improve the knowledge of microplastic pollution in China, we investigated samples from 53 estuarine sediment locations collected with a box corer within the Changjiang Estuary. Microplastics (<5 mm) were extracted from sediments by density separation, after which they were observed under a microscope and categorized according to shape, color and size. Identification was carried out using Micro-Fourier-Transform Infrared Spectroscopy (μ-FT-IR).The abundance of microplastics in the Changjiang Estuary was mapped. The mean concentration was 121 ± 9 items per kg of dry weight, varying from 20 to 340 items per kg of dry weight. It was found that the concentration of microplastics was the highest on the southeast coast of Shanghai. The distribution pattern of microplastics may be affected by the Changjiang diluted water in summer. All of the microplastics collected were categorized according to shape, color and size. Among which fiber (93%), transparent (42%) and small microplastics (<1 mm) (58%) were the most abundant types. No clear correlation between microplastics and the finer sediment fraction was found. Rayon, polyester, and acrylic were the most abundant types of microplastics identified, indicating that the main source of microplastics in the Changjiang Estuary was from washing clothes (the primary source). It is possible to compare microplastic abundance in this study with the results of other related studies using the same quantification method. The identification of microplastics raises the awareness of microplastic pollution from drainage systems. The prevalence of microplastic pollution calls for monitoring microplastics at a national scale on a regular basis.
Show more [+] Less [-]Prenatal methylmercury exposure through maternal rice ingestion: Insights from a feasibility pilot in Guizhou Province, China
2013
Rothenberg, Sarah E. | Yu, Xiaodan | Zhang, Yumei
Maternal hair and blood were investigated as biomarkers for prenatal methylmercury (MeHg) exposure among seventeen mothers recruited at parturition in Wanshan, Guizhou Province, China, where rice ingestion was the primary MeHg exposure pathway and atmospheric mercury (Hg) levels were elevated. For all three trimesters (n = 51), hair total Hg (THg) and MeHg concentrations ranged from 0.27 to 4.9 μg/g (median: 0.96 μg/g) and 0.077 to 2.3 μg/g (median: 0.43 μg/g), respectively, while blood THg levels ranged from 1.7 to 11 μg/L (median: 3.0 μg/L, n = 17). Despite adequate hair washing procedures, median %MeHg (of THg) was 37% (range: 14–89%, n = 51), indicating exogenous inorganic Hg(II) contamination or incorporation of elemental Hg (Hgo) into the hair shaft were important. Rice MeHg levels (n = 17) were highly correlated with blood THg (r2 = 0.66) compared to hair MeHg (r2 = 0.31) (when variables were log10-transformed), suggesting blood THg was a more preferable biomarker for prenatal MeHg exposure within this population.
Show more [+] Less [-]Arsenic in cooked rice: Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract
2012
Sun, Guo-Xin | Van de Wiele, Tom | Alava, Pradeep | Tack, Filip | Du Laing, Gijs
Rice, used as staple food for half of the world population, can easily accumulate arsenic (As) into its grain, which often leads to As contamination. The health risk induced by presence of As in food depends on its release from the food matrix, i.e., its bioaccessibility. Using an in vitro gastrointestinal simulator, we incubated two types of cooked rice (total As: 0.389 and 0.314 mg/kg). Arsenic bioaccessibility and speciation changes were determined upon gastrointestinal digestion. Washing with deionized water and cooking did not result in changes of As speciation in the rice although the arsenic content dropped by 7.1–20.6%. Arsenic bioaccessibility of the cooked rice in the small intestine ranged between 38 and 57%. Bioaccessibility slightly increased during digestion in the simulated small intestine and decreased with time in the simulated colon. Significant speciation changes were noted in the simulated colon, with trivalent monomethylarsonate (MMAᴵᴵᴵ) becoming an important species.
Show more [+] Less [-]Distributions and impact factors of antimony in topsoils and moss in Ny-Ålesund, Arctic
2012
Jia, Nan | Sun, Liguang | He, Xin | You, Kehua | Zhou, Xin | Long, Nanye
The distribution of antimony (Sb) in topsoil and moss (Dicranum angustum) in disturbed and undisturbed areas, as well as coal and gangue, in Ny-Ålesund, Arctic was examined. Results show that the weathering of coal bed could not contribute to the increase of Sb concentrations in topsoil and moss in the study area. The distribution of Sb is partially associated with traffic and historical mining activities. The occurrence of the maximum Sb concentration is due to the contribution of human activities. In addition, the decrease of Sb content in topsoil near the coastline may be caused by the washing of seawater. Compared with topsoils, moss could be a useful tool for monitoring Sb in both highly and lightly polluted areas.
Show more [+] Less [-]Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?
2019
Sendra, Marta | Staffieri, Eleonora | Yeste, María Pilar | Moreno-Garrido, Ignacio | Gatica, José Manuel | Corsi, Ilaria | Blasco, Julián
Nowadays, the occurrence of a large volume of plastic litter in oceanic and coastal zones has increased concern about its impacts on marine organisms. The degradation of plastic polymers leads to the formation of smaller fragments at both micro and nano scale (<5 mm and <1 μm respectively). Nanoplastics (NPs), due to their smaller size and high specific surface area can establish colloidal interactions with marine microalgae, therefore potential toxicity can be led. . To assess this hypothesis, the aim of the present study is to examine the behaviour of polystyrene nanoparticles (PS NPs) of different sizes (50 and 100 nm) in marine water and their possible effects at different physiological and cellular levels in the marine diatom Phaeodactylum tricornutum. Different biomarkers and stress responses in P. tricornutum were analysed when organisms were exposed to environmentally relevant PS NPs concentrations between 0.1 and 50 mg L−1. Our results showed significant differences between controls and exposure microalgae, indicating toxicity. After 24 h, an increase in oxidative stress biomarkers, damage to the photosynthetic apparatus, DNA damage and depolarization of mitochondrial and cell membrane from 5 mg L−1 were observed. Further after 72 h the inhibition of population growth and chlorophyll content were observed. Examining effects the effects related to PS NPs size, the smallest (50 nm) induced greater effects at 24 h while bigger PS NPs (100 nm) at72 h. This bigger particles (100 nm) showed more stability (in size distribution and spherical form) in the different culture media assayed, when compared with the rest of particles used. Strong adsorption and/or internalization of PS NPs was confirmed through changes in cell complexity and cell size as well as the fluorescence of 100 nm fluoresbrite PS NPs after washing cell surface.
Show more [+] Less [-]Microfiber release from different fabrics during washing
2019
Yang, Libiao | Qiao, Fei | Lei, Kun | Li, Huiqin | Kang, Yu | Cui, Song | An, Lihui
Microfiber is a subgroup of microplastics and accounts for a large proportion of microplastics in aquatic environment, especially in municipal effluents. The purpose of the present study was to quantify microfiber shedding from three most populate synthetic textile fabrics: polyester, polyamide, and acetate fabrics. The results showed that more microfibers were released after washing with a pulsator laundry machine than a platen laundry machine. The greatest number of microfibers was released from acetate fabric, which was up to 74,816 ± 10,656 microfibers/m2 per wash, although microfibers were shed from all materials. Moreover, an increasing trend was found in the number of microfibers shedding from synthetic fabrics with the washing temperature increasing, and greater microfiber release occurred when washing fabrics with detergent rather than with water alone. The lint filter bag equipped with the pulsator laundry machine retained the longer microfibers (>1000 μm), but not the shorter microfibers (<500 μm) instead of releasing into the drainage system. Our data suggested that microfibers released during washing of synthetic fabrics may be an important source of microfibers in aquatic environment due to the increasing production and use of synthetic fabrics globally. Thus, more efficient filtering bags or other technologies in household washing machines should be developed to prevent and reduce the release of microfibers from domestic washing.
Show more [+] Less [-]Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
2018
De Falco, Francesca | Gullo, Maria Pia | Gentile, Gennaro | Di Pace, Emilia | Cocca, Mariacristina | Gelabert, Laura | Brouta-Agnésa, Marolda | Rovira, Angels | Escudero, Rosa | Villalba, Raquel | Mossotti, Raffaella | Montarsolo, Alessio | Gavignano, Sara | Tonin, Claudio | Avella, Maurizio
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.
Show more [+] Less [-]