Refine search
Results 1-10 of 11
Evaluating Domestic Wastewater Treatment Efficiency of Field Scale Hybrid Flow Constructed Wetland in Series Full text
2024
Vishwakarma, Smily | Dharmendra, Dharmendra
Constructed wetlands (CWs) are man-made systems designed to treat a range of residential, commercial, and industrial wastewaters. The objective of the study was to evaluate the efficiency of wastewater treatment systems using constructed wetlands. The effectiveness of removing chemical and physical pollutants was also evaluated. The setup consisted of a hybrid flow system composed of upflow constructed wetland and a horizontal flow constructed wetland connected in series that is used for primary treatment of the influent of domestic wastewater. Two systems were analyzed: one cultivated with the ornamental species Canna Indica, and one cultivated with the cattail Cymbopogon flexuosus. It consisted of two treatment sections consisting of two plant species Cymbopogon citratus (lemon grass – first CW) and Canna xalapensis Horan (Canna Indica – second CW). The water quality parameters i.e., BOD, COD, TSS were analyzed according to APHA (American Public Health Association) by daily sampling. The CW was monitored for the quality of wastewater inflows and outflows and nutrient accumulation in plants. Results showed that the maximum COD removal for Lemon Grass and Canna Indica beds were 75% and 70% respectively at 200mg/L COD loading in the CW setup over a six-month period respectively. The maximum BOD removal found in Lemon Grass and Canna Indica beds were 73% and 64% respectively at a feed concentration of 200mg/L COD. Both the CWs together as one unit showed similar rates of TSS removal irrespective of the type of wetland plant species and were more efficient in treating wastewater.
Show more [+] Less [-]Removal of Benzyl butyl phthalate by Polyetheretherketone/polyvinylalcohol nanocomposite Modified with Zinc oxide nanoparticles Adsorbent from Wastewater Full text
2024
Cheraghi, Reza | Abrishamkar, Maryam | Jalali Jahromi, Hossein | Hoseini, Farzaneh
The applicability of Polyetheretherketone/polyvinylalcohol nanocomposite modified with zinc oxide nanoparticles synthesis for the removal of benzyl butyl phthalate from wastewater. Identical techniques, including BET, FT-IR, XRD, and SEM, have to characterize this unknown material. The investigation shows the applicability of adsorbent PEEK/PVA/ZnONPs, as an available, suitable, and low-cost adsorbent for adequately removing the benzyl butyl phthalate from wastewater. The impacts of variables, including benzyl butyl phthalate concentration, adsorbent, pH, and time (15 mgL-1, 0.3 g, 5.0, and 60 min). Based on the received data, the adsorption of benzyl butyl phthalate on the PEEK/PVA/ZnONPs adsorbent agrees well with the Langmuir adsorption model isotherm (qm = 34.24 mgg-1). The results of the thermodynamic parameter showed a negative enthalpy (-77.0 KJ/mol), a negative Gibbs free energy (-11.7 KJ/mol), and negative entropy (-274.0 J/K.mol). This led to the conclusion that the adsorption process is energetically possible, and exothermic was also spontaneous. This work indicates that the PEEK/PVA/ZnONPs, used as an ecologically adapted, adsorbent holds promise for eliminating benzyl butyl phthalate from wastewater.
Show more [+] Less [-]Concentration of Selected Phenolic Compounds in Effluent, Stream and Groundwater of a Local Textile Industry in Abeokuta, Ogun State, Nigeria Full text
2024
Olayinka, Olufunmilayo | Egbeyemi, Morenikeji | Oyebanji, Adedayo
Phenols have attracted global interest in the sphere of environmental management due to their potential toxicity on human health. This study determined concentrations of three priority phenolic compounds in effluent and water of a local textile industry in Abeokuta, Nigeria. During tie-dye production, triplicates of effluent, well water, stream and control water were collected three times from five points to give a total of forty-five samples. Physicochemical parameters of samples including temperature, pH, electrical conductivity (EC), total suspended solids (TSS) and total dissolved solids (TDS) were determined according to standard methods while the concentrations of the priority phenolic compounds (4-nitrophenol, 4-chloro-3-methylphenol and 2, 4-dinitrophenol) were determined using High Performance Liquid Chromatography equipped with Ultra-Violet detector (HPLC/UV). Data obtained were subjected to descriptive (mean and standard deviation) and inferential (ANOVA) statistics. pH, EC and TSS of effluent and water samples were higher than the permissible limits of World Health Organization (WHO) and Federal Environmental Protection Agency (FEPA) while temperature of the effluent samples and TDS of the well water samples were within standard values. Higher concentrations of the priority phenolic compounds occurred in effluent than water samples but 4-nitrophenol was below detection limit (DL) in water samples. Concentrations of 4-nitrophenol, 4-chloro-3-methylphenol and 2,4-dinitrophenol in effluent exceeded stipulated standard of WHO (0.01 mg/L) and water samples. High concentrations of phenols in water bodies at the local textile industry suggest uncontrolled discharge of effluent from the industry which could eventually reach surface and ground water with potential significant health implications to the populace.
Show more [+] Less [-]Application of Electrochemical Disinfection Process Using Aluminum Electrodes for Efficient Removal of Coliforms from Wastewater Full text
2024
Nabi Bidhendi, Amir | Mehrdadi, Nasser | Karbassi, Abdolreza
In this work, it was attempted to evaluate and demonstrate disinfection effectiveness of an electrochemical process to entirely remove coliform from wastewater effluent following secondary treatment. For the tests, an experimental bench-scale batch electrochemical cell was constructed, and aluminum electrodes were employed in the electro-disinfection reactor. In the electric disinfection phase, wastewater samples were put in the reactor/disinfector and a direct current (DC) was applied to it. According to findings, a significant decrease occurred in the total number of coliforms in the treated wastewater, and a high improvement occurred in the effluent properties. At a contact time of 15 min and a current density of 5.5 mA/cm2, led to a bacterial killing effectiveness of 97.7% or above. As the current density and contact time increased, a general increase occurred in the bacterial killing efficiency, and the effect of the two above-mentioned factors was much greater than the effect of salinity. Moreover, according to the experimental data, the removal efficiency of chemical oxygen demand (COD) and total suspended solids (TSS) by the aluminum electrodes were 78.50% and 99.93%, respectively. The findings indicate the applicability of the proposed electrochemical treatment to wastewater effluent. Nevertheless, to be able to apply this system at an industrial scale in the future, it is necessary to conduct more research into the optimum operation conditions and make an in-depth comparison of energy consumptions between the electrochemical treatment and the conventional approaches.
Show more [+] Less [-]Wastewater based epidemiology as a public health resource in low- and middle-income settings Full text
2024
Hamilton, Katie A. | Wade, M.J. | Barnes, K.G. | Street, R.A. | Paterson, S.
In the face of emerging and re-emerging diseases, novel and innovative approaches to population scale surveillance are necessary for the early detection and quantification of pathogens. The last decade has seen the rapid development of wastewater and environmental surveillance (WES) to address public health challenges, which has led to establishment of wastewater-based epidemiology (WBE) approaches being deployed to monitor a range of health hazards. WBE exploits the fact that excretions and secretions from urine, and from the gut are discharged in wastewater, particularly sewage, such that sampling sewage systems provides an early warning system for disease outbreaks by providing an early indication of pathogen circulation. While WBE has been mainly used in locations with networked wastewater systems, here we consider its value for less connected populations typical of lower-income settings, and assess the opportunity afforded by pit latrines to sample communities and localities. We propose that where populations struggle to access health and diagnostic facilities, and despite several additional challenges, sampling unconnected wastewater systems remains an important means to monitor the health of large populations in a relatively cost-effective manner.
Show more [+] Less [-]Do we need trees in Treatment Wetland models ? Full text
2024
Guillaume, Sophie | Pueyo-Ros, J | Comas, J. | Forquet, N | Réduire, valoriser, réutiliser les ressources des eaux résiduaires (UR REVERSAAL) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Instituto Catalán de Investigación del Agua = Catalan Institute for Water Research (ICRA) ; Universitat de Girona = University of Girona (UdG) | INRAE | ODE (Office de l'eau de la Martinique) | Caribbean Water & Sewerage Association Inc | Hupanam
International audience | Treatment Wetlands (TW) are employed in the treatment of wastewater, participating in a decentralised and sustainable urban water management. Their designs and usages vary greatly across the world, which limit the aggregation of comparable data for deeper understanding of the mechanisms ruling over water treatment. We developed a hybrid modelling methodology to combine mechanistic and empirical pre-sizing models, applied to a context of low amount of data and knowledge on Horizontal and Vertical Flow TW. We first collected data from the scientific literature and introduced a data quality validation step providing reliability weights associated with each observation. We secondly trained and compared machine-learning models on the assessed dataset. We finally tested two hybridizations with the tank-in-series model, and predicting an optimized surface with a uncertainty interval. This methodology is reproducible and we believe hybrid models can provide more accurate and reliable predictions, therefore facilitating implementations of TW in urban plannings.
Show more [+] Less [-]Systematic Review of Phytoremediation: Efficacy of Aquatic Plants in Wastewater Treatment and Pollutant Removal Full text
2024
Mangesh Jabade and Jasneet Kaur
The swift process of industrialization and urbanization in our society has resulted in a growing issue of wastewater production, which presents a substantial danger to ecosystems and human well-being. This study examines the efficacy of aquatic plants in wastewater treatment by using their innate ability to remove pollutants. Water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and duckweeds (Lemnaceae) are types of aquatic plants that have been thoroughly researched due to their capacity to cleanse domestic, industrial, agricultural, and wastewater. This study encompasses a range of studies completed from 2014 to 2024, which investigate the efficacy of different aquatic plants in eliminating contaminants and provide insights into the specific mechanisms employed by these plants. Research has revealed remarkable findings, indicating that specialist plants can eliminate pollutants, including nitrogen, phosphate, and heavy metals, with an efficiency of up to 100%. Furthermore, the incorporation of these plants into wetlands and natural purification systems has been demonstrated to enhance the purification process by stimulating increased biomass production and the absorption of noxious gases. Future research should give priority to genetically modifying plants to enhance their capacity for absorbing contaminants and to develop integrated systems for treating wastewater. In summary, this study showcases the capacity of aquatic plants to serve as a highly effective and eco-friendly substitute for wastewater treatment. Implementing phytoremediation techniques can enhance the sustainability of water management practices and aid in safeguarding our ecosystems and the health of society
Show more [+] Less [-]Invasive Aquatic Plants as Potential Sustainable Feedstocks for Biochar Production and as an Innovative Approach for Wastewater Treatment Full text
2024
K. M. P. I. Jayathilake, P.M. Manage and F. S Idroos
Biochar (BC) is a well-established physical treatment method. The high-cost BC limits their use as adsorbents in wastewater. Thus, deriving BC from cheap and locally available waste materials is needed to develop a feasible waste removal technology. Nowadays, BC technology makes it possible to envision a new strategy to manage invasive plants by converting them into value-added products like BC. Hence, the present study was designed to evaluate the potential utilization of BC as an efficient filter medium made by invasive aquatic plants, Salvinia spp., and Eichhornia spp. A mass of 50 g of prepared activated and nonactivated BC was incorporated in a sand and gravel filter to treat rubber-manufactured wastewater. Wastewater was passed through the filter, and both raw and treated water samples were analyzed for pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammoniacal-Nitrogen (NH3-N), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Phosphates (TP), Nitrate (NO3-N), turbidity and heavy metals (Zinc, Chromium). The control filter was developed only with sand and gravel, excluding BC. Fourier Transform-Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM) were used to analyze BC’s chemical and physical characteristics. A brine shrimp lethality assay was carried out for toxicological evaluation. OH stretching (3,550-3,200 cm−1), C=C aromatic stretching (1400-1660 cm−1), and Phenol-O-H bending (1,300-1,400 cm−1) were recorded in all BC samples that involved the adsorption mechanism. Observed images indicated differences in surface morphology of both activated and nonactivated BC were observed under SEM observation. The study concludes that the filter unit incorporated with activated Eichhornia spp. Gave the best treatment efficiency when compared to filter units incorporated with other activated and nonactivated BC. The toxicity assay revealed 100% mortality in the control setup and raw wastewater but only 60–70% in the nonactivated BC integrated filters. Activated BC-incorporated filters showed no mortalities. Hence, the study’s outcomes suggest a green approach using invasive aquatic plants for sustainable wastewater treatment.
Show more [+] Less [-]Energy Requirement of Wastewater Treatment Plants: Unleashing the Potential of Microalgae, Biogas and Solar Power for Sustainable Development Full text
2024
Urvashi Gupta, Abhishek Chauhan, Hardeep Singh Tuli, Seema Ramniwas, Moyad Shahwan and Tanu Jindal
Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.
Show more [+] Less [-]Optimizing Community Health Center Effluent Treatment with Moving Bed Biofilm Reactor Technology Combined with Activated Carbon and Chlorine Full text
2024
Budirman, Muhammad Farid Samawi, Fahruddin, Paulina Taba, Mahatma Lanuru and Agus Bintara Birawida
Community Health Centers are small-scale hospitals that serve community medicine in Indonesia. These activities generate wastewater containing various contaminants, such as pathogens, chemicals, and nutrients, which can pollute the environment and endanger human health. So, efforts are needed to reduce their impact through wastewater treatment. This research applies an anaerobic-aerobic biofilter system with Moving Bed Biofilm Reactor (MBBR) technology combined with activated carbon and chlorine in treating wastewater. The treatments in the study were different service capacities and wastewater treatment, with three replicates in each treatment. The residence time of wastewater in the system is 4 h. The results showed that combining MBBR technology, activated carbon, and chlorine could reduce temperature, TSS, pH, BOD5, COD, NH3, and Coliform values in wastewater in three Community Health Center services. Thus, it can be concluded that the different services and wastewater treatment efforts, combined with MBBR, activated charcoal, and chlorine, have been proven to affect and improve the quality of wastewater from the Community Health Center to meet the effluent quality standards.
Show more [+] Less [-]