Refine search
Results 1-10 of 23
Adsorptive separation of cadmium from aqueous solutions and wastewaters by riverbed sand Full text
2007
Sharma, Y.C. | Kaul, S.N. | Weng, C.H.
Application of riverbed sand for the adsorptive separation of cadmium(II) from aqueous solutions has been investigated. Removal increased from 26.8 to 56.4% by decreasing the initial concentration of cadmium from 7.5 x 10-5 to 1.0 x 10-5 M at pH 6.5, 25 °C temperature, agitation speed of 100 rpm, 100 μm particle size and 1.0 x 10-2 NaClO4 ionic strength. Process of separation is governed by first order rate kinetics. The value of rate constant of adsorption, kad, was found to be 2.30 x 10-2 per min at 25 °C. Values of coefficient of mass transfer, βL, were calculated and its value at 25 °C was found to be 1.92 x 10-2 cm/s. Values of Langmuir constant were calculated. Values of thermodynamic parameters ΔG0, ΔH0 and ΔS0 were also calculated and were recorded as -0.81 kcal/mol, -9.31 kcal/mol and -28.10 cal/mol at 25 °C. pH has been found to affect the removal of cadmium significantly and maximum removal, 58.4%, has been found at pH 8.5. Process can be used for treatment of cadmium(II) rich wastewaters.
Show more [+] Less [-]Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity Full text
2007
Latorre, A. | Malmqvist, A. | Lacorte, S. | Welander, T. | Barcelo, D.
Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity Full text
2007
Latorre, A. | Malmqvist, A. | Lacorte, S. | Welander, T. | Barcelo, D.
The efficiency of several lab scale treatments (aerobic, anaerobic and ozone or combination of these) was evaluated using two packaging board mill whitewaters. The effect of the different treatments on the elimination of the organic load, the chemical oxygen demand (COD) and the toxicity was tested as well as the relationship between these parameters. Biocides, phenolic compounds, surfactants, plasticiziers and wood extractives were identified in untreated and treated whitewaters by liquid chromatography coupled with mass spectrometry (LC-MS) or gas chromatography coupled with mass spectrometry (GC-MS). A strong dependency on the water type and treatment efficiency was observed, being the combination of anaerobic and aerobic treatments the best option to reduce the organic contaminants in these waters, although in some cases, the toxicity did not decrease. However, ozone as post-treatment permitted a further reduction of organic compounds, toxicity and COD. Aerobic and anaerobic treatments remove organic compounds in paper mill effluents but toxicity remains.
Show more [+] Less [-]Evaluation of the treatment efficiencies of paper mill whitewaters in terms of organic composition and toxicity Full text
2007
Latorre Fernández, Anna | Malmqvist, Asa | Lacorte Bruguera, Silvia | Welander, Thomas | Barceló, Damià
8 pages, 3 figures, 1 table.-- PMID: 17118260 [PubMed].-- Online version available Nov 20, 2006. | Issue title: Air Pollution and Climate Change: A Global Overview of the Effects on Forest Vegetation. | The efficiency of several lab scale treatments (aerobic, anaerobic and ozone or combination of these) was evaluated using two packaging board mill whitewaters. The effect of the different treatments on the elimination of the organic load, the chemical oxygen demand (COD) and the toxicity was tested as well as the relationship between these parameters. Biocides, phenolic compounds, surfactants, plasticiziers and wood extractives were identified in untreated and treated whitewaters by liquid chromatography coupled with mass spectrometry (LCeMS) or gas chromatography coupled with mass spectrometry (GCeMS). A strong dependency on the water type and treatment efficiency was observed, being the combination of anaerobic and aerobic treatments the best option to reduce the organic contaminants in these waters, although in some cases, the toxicity did not decrease. However, ozone as post-treatment permitted a further reduction of organic compounds, toxicity and COD. | Aerobic and anaerobic treatments remove organic compounds in paper mill effluents but toxicity remains. | This study has been supported by the EU Energy, Environmental and Sustainable Development Program (CLOSEDCYCLE, Contract No EVK1-2000-00749). The authors thank Riudesa factory (Catalonia, Spain) and Anox (Sweden) for supplying water samples and Merck for supplying the LC columns. | Peer reviewed
Show more [+] Less [-]Relationship Between Sulphate Starvation and Chromate Reduction in a H₂-fed Fixed-film Bioreactor Full text
2007
Battaglia-Brunet, F. | Michel, C. | Joulian, C. | Ollivier, B. | Ignatiadis, I.
While developing a low-sulphate system combining indirect chromate-reduction by biologically-produced hydrogen sulphide and direct biological chromate-reduction to treat chromate-bearing waters, the aim of the present work was to evaluate the influence of sulphate and H₂ starvation on chromate reduction. Chromate-reduction was performed under continuous-feed conditions in a fixed-film column bioreactor originally inoculated with a bacterial consortium containing Desulfomicrobium norvegicum, and fed with H₂. With 500 mg l-¹ of sulphate in the feed solution, total chromate-reduction was observed in the effluent whereas sulphate-reduction was strongly decreased, as also confirmed by measurements of isotopic ratios for sulphur. In the absence of sulphate, a chromate-reduction activity was still observed but was lower than in the presence of sulphate, and chromate-reduction was H₂-dependent. Molecular biology techniques revealed the composition of the bacterial population in the effluent. D. norvegicum together with other micro-organisms of the Bacteria domain were detected. They include members related to the genera Acinetobacter, Acetobacterium and Rhodocyclus. Even when sulphate-reduction was strongly decreased, the presence of sulphate enhances the efficiency of the H₂-dependent chromate-reduction. A H₂- and CO₂-consuming bacterial population may be used in a globally autotrophic process to reduce chromate at low sulphate concentration, thus avoiding excess sulphide production.
Show more [+] Less [-]An Alternative Arrangement of Gravel Media in Tidal Flow Reed Beds Treating Pig Farm Wastewater Full text
2007
Sun, G. | Zhao, Y. Q. | Allen, S. J.
This paper reports the effect of using coarse substrates in the upper layer of a gravel-based tidal flow reed bed treating pig farm wastewater. The aim of this unconventional medium arrangement is to seek a solution for the problem of clogging that frequently takes place during the treatment of strong wastewaters. Results from lab-scale experiments demonstrated that, in general, employing coarse substrates in the upper layer of the reed bed gave greater efficiency for the removal of organic matter and suspended solids, due to reduced clogging. A specific clogging tendency rate was defined to quantitatively describe the clogging behaviour. Calculation of the tendency rate revealed that the unconventional medium arrangement had a clear advantage over the conventional arrangement of employing fine gravel or sand in top layer.
Show more [+] Less [-]Seasonal Denitrification Potential in Wetland Sediments with Organic Matter from Different Plant Species Full text
2007
Bastviken, S Kallner | Eriksson, P. G. | Ekström, A. | Tonderski, K.
Vegetation both physically and biochemically influences denitrification in wetlands. Litter from various plant species supplies various amounts and qualities of organic carbon to denitrifying bacteria, and may thus affect denitrification capacity. We explore whether there is seasonal variation in the denitrification potential in stands of Glyceria maxima, Phragmites australis, Typha latifolia, and Potamogeton pectinatus (the stands differed in terms of which species was predominant). Experiments and measurements investigated whether denitrification potential was related to organic matter and its availability to denitrifying bacteria, suitability for bacterial growth, and amount in the wetland. Availability of organic material, as measured in the slurries, was highest in the G. maxima and P. pectinatus samples, with the highest availability in May and August. However, when the samples were closer to wetland conditions, i.e., intact sediment cores containing litter and organic sediment, the denitrifying capacity was highest in the cores from G. maxima stands, but lowest in P. pectinatus cores. In addition, the denitrification potential of the intact cores was highest in November. Differences in denitrification capacity between the slurries and intact sediment cores, considering the organic material of the plant species and the seasonal pattern, were attributed to differences in the amount of plant litter generated.
Show more [+] Less [-]Sorption Behavior of 4-Chlorophenol from Aqueous Solutions By a Surfactant-modified Mexican Zeolitic Rock in Batch and Fixed Bed Systems Full text
2007
Cortés-Martínez, Raúl | Solache-Ríos, Marcos | Martínez-Miranda, Verónica | Alfaro-Cuevas V., Ruth
The removal of 4-chlorophenol from aqueous solutions by both a Mexican clinoptilolite-heulandite zeolitic rock and the modified zeolitic material with the surfactant hexadecyltrimethylammonium bromide (HDTMABr), using batch and packed-bed (column) configurations, was investigated. The unmodified zeolitic rock did not show any adsorption of 4-chlorophenol. The effects of pH, contact time and concentration of 4-chlorophenol on the adsorption process by the surfactant modified material were examined. The sorption of 4-chlorophenol was not affected by the pH range from 4 to 9.5. 4-chlorophenol retention reached equilibrium in about 18 h and the rate of 4-chorophenol adsorption by the modified material was faster in the first 10 h than later. The experimental data were treated with the models: pseudo-first order, pseudo-second order, fractional power and Elovich models. Although, the last three gave correlation coefficients higher than 0.96, the pseudo-second order model was the best to describe the reaction rate. The experimental data follow a linear isotherm which is characteristic for sorption of organic solutes by the partition mechanism. The Bed Depth-Service Time Model was applied to the sorption results in order to model the column operation. The results showed that the surfactant modified zeolitic rock could be considered as a potential adsorbent for 4-chlorophenol removal from aqueous solutions.
Show more [+] Less [-]Evaluation of Biodegradability and Biodegradation Kinetics for Anionic, Nonionic, and Amphoteric Surfactants Full text
2007
Sharvelle, Sybil | Lattyak, Rebecca | Banks, M Katherine
The biodegradation kinetics of anionic (sodium laureth sulfate - SLES), amphoteric (disodium cocoamphodiacetate - DSCADA), and nonionic surfactants (polyalcohol ethoxylate - PAE) were assessed in this laboratory study. Similar degradation behavior was observed for all surfactants with only a fraction of the parent compound readily biodegradable. Biodegradation, as estimated by COD removal, was initially (i.e., within 24 h) rapid, however only 40-70% of the surfactant molecules were readily biodegradable. Intrinsic kinetic parameters were successfully quantified for the readily biodegradable component of the surfactant. Inhibition was not observed and microbial kinetics of SLES, DSCADA, and PAE degradation fit the Monod model well. Average μ-S curves were generated for each surfactant. Based on these results, complete degradation of the target surfactants using biological waste treatment would be limited.
Show more [+] Less [-]Assessment of Cryptosporidium Removal from Domestic Wastewater Via Constructed Wetland Systems Full text
2007
Morsy, Effat A. | Al-Herrawy, Ahmad Z. | Ali, Mohamed A.
Constructed wetlands have been recognized as offering a removal treatment option for high concentrations removal of chemical and biological contaminants in domestic wastewater. The enteric protozoan parasite Cryptosporidium is considered one of the highly resistant to treatment and highly infectious organisms to humans and animals. Moreover, some species of Cryptosporidium are known to have a zoonotic nature. In this investigation a pilot scale for domestic wastewater treatment system was used, consisting of the following steps in series: (1) up-flow anaerobic sludge blanket (UASB) reactor, (2) free water surface (FWS) wetland unit, and (3) sub-surface flow (SSF) wetland unit. This treatment system was fed with domestic wastewater to assess its efficiency in removing Cryptosporidium oocysts. The obtained Cryptosporidium oocysts were detected and enumerated by two different staining techniques 'acid fast trichrome (AFT) and modified Ziehl Neelsen (MZN) stains'. Polymerase chain reaction (PCR) technique was also used to detect Cryptosporidium DNA in wastewater samples. Results revealed that anaerobic treatment (using UASB reactor) could remove about 53.1% of Cryptosporidium oocysts present in raw wastewater. The in-series connection between the two wetland units allowed complete elimination of Cryptosporidium oocysts as the first (FWS) wetland unit removed 95.9% of the oocysts present in anaerobically treated wastewater and the remaining portion of oocysts was completely removed by the second (SSF) wetland unit. Cryptosporidium oocysts were detected in 95.8% of raw wastewater samples with a mean count of 43.8 oocysts/l when AFT stain was used while they were detected in only 87.5% of raw wastewater samples with a mean count of 35.6 oocysts/l when MZN stain was used. Polymerase chain reaction (PCR) technique was able to detect Cryptosporidium DNA in only 45.8% of raw wastewater samples. Positive PCR results were only achieved in wastewater samples containing 52 oocysts or more per liter.
Show more [+] Less [-]Urban Influences on Stream Chemistry and Biology in the Big Brushy Creek Watershed, South Carolina Full text
2007
Lewis, Gregory P. | Mitchell, Jennifer D. | Andersen, C Brannon | Haney, Dennis C. | Liao, Min-Ken | Sargent, Kenneth A.
Naturally high total dissolved solids and upstream agricultural runoff often mask the influence of urban land cover on stream chemistry and biology. We examined the influence of headwater urbanization on the water chemistry, microbiology, and fish communities of the Big Brushy Creek watershed, a 96 km² drainage basin in the piedmont of South Carolina, USA. Concentrations of most major anions and cations (especially nitrate, sulfate, chloride, sodium, potassium, and calcium) were highest in the urban headwaters and decreased downstream. Generally, the highest concentrations of suspended coliform bacteria occurred in the urban headwaters. In contrast, stream habitat quality and the abundance, species richness, and species diversity of fishes did not differ significantly between urban and rural sites. Discharge of wastewater treatment plant effluent at one rural location caused an increase in concentrations of many solutes and possibly the abundance of benthic algae. We hypothesize that atmospheric dry deposition and domestic animal wastes are important sources of stream solutes and of coliform bacteria, respectively, in the urban headwaters. The lack of significant differences in fish abundance and diversity between urban and rural sites may indicate that urban development in the Big Brushy Creek watershed has not yet degraded habitat conditions greatly for stream fishes. Alternatively, agriculture or other land uses may have degraded stream habitat quality throughout the watershed prior to urbanization.
Show more [+] Less [-]Accumulation of Metals in the Sediment and Reed Biomass of a Combined Constructed Wetland Treating Domestic Wastewater Full text
2007
Lesage, E. | Rousseau, D. P. L. | Meers, E. | Van de Moortel, A. M. K. | Du Laing, G. | Tack, F. M. G. | De Pauw, N. | Verloo, M. G.
This study assessed the accumulation of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment and biomass of P. australis (Cav.) Trin. ex Steud. in a combined constructed wetland (CW) designed for the treatment of domestic wastewater of 750 population equivalents. The CW consists of two vertical subsurface flow (VSSF) reed beds followed by two horizontal subsurface flow (HSSF) reed beds. The sediment in the VSSF reed bed was contaminated with Cu (201 ± 27 mg kg-¹ DM) and Zn (662 ± 94 mg kg-¹ DM) after 4 years of operation. Concentrations of Cd, Cu, Pb and Zn in the sediment generally decreased along the treatment path of the CW. On the contrary, higher Al, Cr, Fe, Mn and Ni concentrations were observed in the sediment of the inlet area of the HSSF reed bed. Redox conditions were presumably responsible for this observed trend. Metal concentrations in the reed biomass did not show excessive values. Accumulation in the aboveground reed biomass accounted for only 0.5 and 1.4% of, respectively, the Cu and Zn mass load in the influent. The sediment was the main pool for metal accumulation in the CW.
Show more [+] Less [-]