Refine search
Results 1-6 of 6
Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe)
2016
Crabit, Armand | Cattan, Philippe | Colin, François | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Fonctionnement écologique et gestion durable des agrosystèmes bananiers et ananas (UR GECO) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Perou Catchment (12 km(2)) characterized by heavy rainfall (5686 mm year(-1)). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009-2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Perou Catchment (3400 mu g kg(-1)) than in the entire banana cropping area in Guadeloupe (2100 mu g kg(-1)). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha(-1)), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha(-1)); and the greatest stocks are observed in SC2 on Andosols (12 kg ha(-1)) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Perou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river.rights reserved.
Show more [+] Less [-]3D modeling of phytoplankton seasonal variation and nutrient budget in a southern Mediterranean Lagoon
2017
Béjaoui, Béchir | Solidoro, Cosimo | Harzallah, Ali | Chevalier, Cristèle | Chapelle, Annie | Zaaboub, Noureddine | Aleya, Lotfi
A 3D coupled physical-biogeochemical model is developed and applied to Bizerte Lagoon (Tunisia), in order to understand and quantitatively assess its hydrobiological functioning and nutrients budget. The biogeochemical module accounts for nitrogen and phosphorus and includes the water column and upper sediment layer. The simulations showed that water circulation and the seasonal patterns of nutrients, phytoplankton and dissolved oxygen were satisfactorily reproduced. Model results indicate that water circulation in the lagoon is driven mainly by tide and wind. Plankton primary production is co-limited by phosphorus and nitrogen, and is highest in the inner part of the lagoon, due to the combined effects of high water residence time and high nutrient inputs from the boundary. However, a sensitivity analysis highlights the importance of exchanges with the Mediterranean Sea in maintaining a high level of productivity. Intensive use of fertilizers in the catchment area has a significant effect on phytoplankton biomass increase.
Show more [+] Less [-]Application of Arc-SWAT Model for Water Budgeting and Water Resource Planning at the Yeralwadi Catchment of Khatav, India
2024
R. S. Sabale, S. S. Bobade, B. Venkatesh and M. K. Jose
Every facet of life, including human habitation, economic development, food security, etc., depends on water as a valuable resource. Due to the burgeoning population and rapid urbanization, water availability needs to be simulated and measured using hydrologic models and trustworthy data. To fulfill this aim, the SWAT model was processed in this work. The SWAT model was formulated to estimate the hydrological parameters of Yeralwadi using meteorological data from IMD (India Meteorological Department) for the period 1995-2020. The observed discharge data was collected from the HDUG Nasik group and used in the calibration and validation of the Model. The SWAT model was corrected & validated through the SUFI-II algorithm in SWAT-CUP to get a better result. The model’s sensitivity is checked by using statistical parameters like Nash-Sutcliffe Efficiency (NSE) and a coefficient of determination (R2). NSE values were 0.72 and 0.80 in calibration and validation, and R2 were 0.80 & 0.76 in calibration and validation, respectively, indicating the acceptance of the model. Results show that 40.6% of the total yearly precipitation was lost by evapotranspiration. The estimated total discharge from the Yeralwadi catchment was 55.6%, out of which 41.2% was surface runoff and 14.4% was baseflow. The other 17.8% was made up of percolation into confined and unconfined aquifers, which served as soil and groundwater storages. The surface runoff is influenced by Curve number (CnII), SOL_AWC, ESCO, and base flow was influenced by ALPHA-BF and GW_REVAP. This study will be useful to water managers and researchers to develop sustainable water resource management and to alleviate the water scarcity issues in the study basin.
Show more [+] Less [-]Finite element modelling to assess the submarine groundwater discharge in an over exploited multilayered coastal aquifer
2021
Rajaveni, Sundara Pandian | Nair, Indu Sumadevi | Brindha, Karthikeyan | Elango, Lakshmanan
A three-dimensional variable-density finite element model was developed to quantify the impact of groundwater over use on submarine groundwater discharge (SGD). The model was applied to the Arani-Korttalaiyar river basin, north of Chennai, India. This region has an upper unconfined and lower semi-confined aquifer extending up to 30 km inland from the coast and beyond this distance; the two aquifers merge and become a single unconfined aquifer. The model simulated that during the period from 2000 to 2012, the flux of seawater to the aquifer has increased from 17,000 to 24,500 m³/day due to over-exploitation of groundwater from the semi-confined aquifer. Where as in the unconfined aquifer, SGD has been taking place. Scenarios showing the impact of newly constructed managed aquifer recharge structures, 10% additional increase in rainfall recharge, and termination of pumping from five well-fields on the groundwater conditions in the area were studied. The model predicted a SGD of 85,243 m³/day from the unconfined aquifer and 22,414 m³/day from the semi-confined aquifer by the end of 2030. By adopting managed aquifer recharge methods, seawater intrusion (rate of 4,408 m³/day) can be reduced and SGD (rate of 22,414 m³/day) increased. The rate of SGD increase and the movement of seawater to aquifer can be completely prevented in the semi-confined aquifer by adopting these management options by 2030. Findings from this study have enhanced the understanding of SGD and water budget, which can be used by decision-makers for the sustainable management of groundwater resources in coastal aquifers.
Show more [+] Less [-]Application of Arc-SWAT Model for Water Budgeting and Water Resource Planning at the Yeralwadi Catchment of Khatav, India
2024
R. S. Sabale, S. S. Bobade, B. Venkatesh and M. K. Jose
Every facet of life, including human habitation, economic development, food security, etc., depends on water as a valuable resource. Due to the burgeoning population and rapid urbanization, water availability needs to be simulated and measured using hydrologic models and trustworthy data. To fulfill this aim, the SWAT model was processed in this work. The SWAT model was formulated to estimate the hydrological parameters of Yeralwadi using meteorological data from IMD (India Meteorological Department) for the period 1995-2020. The observed discharge data was collected from the HDUG Nasik group and used in the calibration and validation of the Model. The SWAT model was corrected & validated through the SUFI-II algorithm in SWAT-CUP to get a better result. The model’s sensitivity is checked by using statistical parameters like Nash-Sutcliffe Efficiency (NSE) and a coefficient of determination (R2). NSE values were 0.72 and 0.80 in calibration and validation, and R2 were 0.80 & 0.76 in calibration and validation, respectively, indicating the acceptance of the model. Results show that 40.6% of the total yearly precipitation was lost by evapotranspiration. The estimated total discharge from the Yeralwadi catchment was 55.6%, out of which 41.2% was surface runoff and 14.4% was baseflow. The other 17.8% was made up of percolation into confined and unconfined aquifers, which served as soil and groundwater storages. The surface runoff is influenced by Curve number (CnII), SOL_AWC, ESCO, and base flow was influenced by ALPHA-BF and GW_REVAP. This study will be useful to water managers and researchers to develop sustainable water resource management and to alleviate the water scarcity issues in the study basin.
Show more [+] Less [-]Leaf rolling dynamics for atmospheric moisture harvesting in wheat plant as an adaptation to arid environments
2022
Merrium, Sabah | Ali, Zulfiqar | Tahir, Muhammad Hammad Nadeem | Habib-ur-Rahman, Muhammad | Hakeem, Sadia
Plant species surviving in the arid regions have developed novel leaf features to harvest atmospheric water. Before the collected water evaporates, it is absorbed and transported for storage within the tissues and move toward the root zone through the unique chemistry of leaf structures. Deep insights into such features reveal that similarities can be found in the wheat plant. Therefore, this study aimed to evaluate the leaf rolling dynamics among wheat genotypes and their relationships with moisture harvesting and its movement on the leaf surface. For this purpose, genotypes were characterized for leaf rolling at three distinct growth stages (tillering, booting, and spike emergence). The contact angle of leaf surface dynamics (adaxial and abaxial), water budget, and morphophysiological traits of genotypes were measured. The results indicate that leaf rolling varies from inward to twisting type among genotypes and positively affected the water use efficiency and soil moisture difference at all growth stages under normal and drought conditions. Results of wetting property (hydrophilic < 90°) of the leaf surface were positively associated with the atmospheric water collection (4–7 ml). The lower values of contact angle hysteresis (12–19°) also support this mechanism. Thus, genotypes with leaf rolling dynamics (inward rolled and twisted) and surface wettability is an efficient fog harvesting system in wheat for interception and utilization of fog water in drought-prone areas. These results can be exploited to develop self-irrigated and drought-tolerant crops.
Show more [+] Less [-]