Refine search
Results 1-10 of 115
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
Show more [+] Less [-]Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types
2020
Hossain, Mobarok | Patra, Pulak Kumar
High concentration of fluoride (up to 20.9 mg/L) in groundwater with significant variation (p = 5.9E-128) among samples was reported from Birbhum district, an acknowledged fluoride endemic region in India. The groundwater samples (N = 368) were grouped based on their hydrochemical properties and aquifer geology for hydro-geochemical characterization. Friedman’s test showed p < 0.0001 confidence level which indicates that fluoride concentration among geological groups and water groups are independent. Bland-Altman plot was used to study the inter-relationships among the groups through bias value (∂) and limit of agreement (LoA). Among the geological groups, laterites and granite-gneiss groups exhibited statistically significantly difference in fluoride geochemistry; whereas the younger and older alluvium groups displayed similar characteristics. The fluoride concentration was found to be in the order Lateritic > Granite-gneiss > Older alluvium ≥ Younger alluvium. Dissolution of minerals (such as fluorite, biotite) in laterite sheeted basalt, and granite-gneiss is the main source of groundwater fluoride in the region. Fluoride concentration is also influenced by depth of water table. Hydrochemical study indicated that fluoride concentration was higher in Na–HCO₃ than in Ca–SO₄ and Ca–HCO₃ type of groundwater. The fluoride concentration were positively correlated with Na⁺ and pH and negatively correlated with the Ca²⁺ and Mg²⁺ signifying linkage with halite dissolution and calcite, dolomite precipitation. Geostatistical mapping of WQI through empirical bayesian kriging (EBK) with respect to regional optimal guideline value (0.73 mg/L) classified that groundwater in some parts of the district are unfit for drinking purpose. Health survey (N = 1767) based on Dean’s criteria for dental fluorosis indicated presence of slight to moderate dental hazard. Besides, providing baseline data for management of groundwater quality in the study area, the study demonstrated the applicability of Bland-Altman analysis and empirical bayesian kriging (EBK) in delineation and interpolation of fluoride contaminated region.
Show more [+] Less [-]Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco)
2017
Moyé, Julien | Picard-Lesteven, Tanguy | Zouhri, Lahcen | El Amari, Khalid | Hibti, Mohamed | Benkaddour, Abdelfattah
Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities.
Show more [+] Less [-]Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region
2016
Oswald, Claire J. | Carey, Sean K.
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L−1. The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L−1) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO42− concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed.
Show more [+] Less [-]Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France
2015
Lapworth, D.J. | Baran, N. | Stuart, M.E. | Manamsa, K. | Talbot, J.
The Chalk aquifer of Northern Europe is an internationally important source of drinking water and sustains baseflow for surface water ecosystems. The areal distribution of microorganic (MO) contaminants, particularly non-regulated emerging MOs, in this aquifer is poorly understood. This study presents results from a reconnaissance survey of MOs in Chalk groundwater, including pharmaceuticals, personal care products and pesticides and their transformation products, conducted across the major Chalk aquifers of England and France. Data from a total of 345 sites collected during 2011 were included in this study to provide a representative baseline assessment of MO occurrence in groundwater. A suite of 42 MOs were analysed for at each site including industrial compounds (n=16), pesticides (n=14) and pharmaceuticals, personal care and lifestyle products (n=12). Occurrence data is evaluated in relation to land use, aquifer exposure, well depth and depth to groundwater to provide an understanding of vulnerable groundwater settings.
Show more [+] Less [-]Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions
2013
Poulíčková, Aloisie | Hájková, Petra | Kintrová, Kateřina | Bat'ková, Romana | Czudková, Markéta | Hájek, Michal
Central European mountain bogs, among the most valuable and threatened of habitats, were exposed to intensive human impact during the 20th century. We reconstructed the subrecent water chemistry and water-table depths using diatom based transfer functions calibrated from modern sampling. Herbarium Sphagnum specimens collected during the period 1918–1998 were used as a source of historic diatom samples. We classified samples into hummocks and hollows according to the identity of dominant Sphagnum species, to reduce bias caused by uneven sampling of particular microhabitats. Our results provide clear evidence for bog pollution by grazing during the period 1918–1947 and by undocumented aerial liming in the early 90-ies. We advocate use of herbarized epibryon as a source of information on subrecent conditions in recently polluted mires.
Show more [+] Less [-]Ammonium release from a blanket peatland into headwater stream systems
2012
Daniels, S.M. | Evans, M.G. | Agnew, C.T. | Allott, T.E.H.
Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation.
Show more [+] Less [-]Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta
2021
Cui, Hao | Bai, Junhong | Du, Shudong | Wang, Junjing | Keculah, Ghemelee Nitta | Wang, Wei | Zhang, Guangliang | Jia, Jia
Coastal wetland soils serve as a great C sink or source, which highly depends on soil carbon flux affected by complex hydrology in relation to salinity. We conducted a field experiment to investigate soil respiration of three coastal wetlands with different land covers (BL: bare land; SS: Suaeda salsa; PL: Phragmites australis) from May to October in 2012 and 2013 under three groundwater tables (deeper, medium, and shallower water tables) in the Yellow River Delta of China, and to characterize the spatial and temporal changes and the primary environmental drivers of soil respiration in coastal wetlands. Our results showed that the elevated groundwater table decreased soil CO₂ emissions, and the soil respiration rates at each groundwater table exhibited seasonal and diurnal dynamics, where significant differences were observed among coastal wetlands with different groundwater tables (p < 0.05), with the average CO₂ emission of 146.52 ± 13.66 μmol m⁻²s⁻¹ for deeper water table wetlands, 105.09 ± 13.48 μmol m⁻²s⁻¹ for medium water table wetlands and 54.32 ± 10.02 μmol m⁻²s⁻¹ for shallower water table wetlands. Compared with bare land and Suaeda salsa wetlands, higher soil respiration was observed in Phragmites australis wetlands. Generally, soil respiration was greatly affected by salinity and soil water content. There were significant correlations between groundwater tables, electrical conductivity and soil respiration (p < 0.05), indicating that soil respiration in coastal wetlands was limited by electrical conductivity and groundwater tables and soil C sink might be improved by regulating water and salt conditions. We have also observed that soil respiration and temperature showed an exponential relationship on a seasonal scale. Taking into consideration the changes in groundwater tables and salinity that might be caused by sea level rise in the context of global warming, we emphasize the importance of groundwater level and salinity in the carbon cycle process of estuarine wetlands in the future.
Show more [+] Less [-]Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium)
2017
Hakoun, Vivien | Orban, Philippe | Dassargues, Alain | Brouyère, Serge
Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996–2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6–dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L−1) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide compound concentrations in chalk aquifers. The developed methodology is not restricted to chalk aquifers, it could be transposed to study other pollutants with concentrations below detection limits.
Show more [+] Less [-]Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments
2010
Rijal, Moti L. | Appel, Erwin | Petrovský, Eduard | Blaha, Ulrich
Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills.
Show more [+] Less [-]