Refine search
Results 1-10 of 36
Wetland soil microplastics are negatively related to vegetation cover and stem density
2020
Helcoski, Ryan | Yonkos, Lance T. | Sanchez, Alterra | Baldwin, Andrew H.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
Show more [+] Less [-]Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China
2011
Bai, Junhong | Xiao, Rong | Cui, Baoshan | Zhang, Kejiang | Wang, Qinggai | Liu, Xinhui | Gao, Haifeng | Huang, Laibin
Soils were sampled in three types of wetlands from the young (A) and old (B) reclaimed regions of the Pearl River Estuary. They were analyzed for total concentrations of heavy metals to investigate their distributions and pollution levels in both regions. Results showed that most heavy metals in ditch and riparian wetlands did not significantly differ from those in reclaimed wetlands in A region, while significantly lower for Cd, Cu, Pb, and Zn in reclaimed wetlands in B region, suggesting higher effects of long-term reclamation. Iron, Cr and Cu were identified as metal pollutants of primary concern and had higher contributions to the total toxic units compared to other metals. Almost all metals exceeded their lowest effect levels and Fe and Cr even exceeded the severe effect levels. Multivariate analysis shows that Fe and Mn are controlled by parent rocks and other metals mainly originate from anthropogenic source.
Show more [+] Less [-]Transformation and release of micronized Cu used as a wood preservative in treated wood in wetland soil
2021
Johnson, M.G. | Luxton, T.P. | Rygiewicz, P.T. | Reichman, J.R. | Bollman, M.A. | King, G.A. | Storm, M.J. | Nash, M.S. | Andersen, C.P.
Micronized Cu (μ-Cu) is used as a wood preservative, replacing toxic chromated copper arsenate (CCA). Micronized Cu is malachite [Cu₂CO₃(OH)₂] that has been milled to micron/submicron particles, with many particle diameters less than 100 nm, mixed with biocides and then used to treat wood. In addition to concerns about the fate of the Cu from μ-Cu, there is interest in the fate of the nano-Cu (n-Cu) constituents. We examined movement of Cu from μ-Cu-treated wood after placing treated-wood stakes into model wetland ecosystems. Release of Cu into surface and subsurface water was monitored. Surface water Cu reached maximum levels 3 days after stake installation and remained elevated if the systems remained inundated. Subsurface water Cu levels were 10% of surface water levels at day 3 and increased gradually thereafter. Sequential filtering indicated that a large portion of the Cu in solution was associating with soluble organics, but there was no evidence for n-Cu in solution. After 4 months, Cu in thin-sections of treated wood and adjacent soil were characterized with micro X-ray absorption fine structure spectroscopy (μ-XAFS). Localization and speciation of Cu in the wood and adjacent soil using μ-XAFS clearly indicated that Cu concentrations decreased over time in the treated wood and increased in the adjacent soil. However, n-Cu from the treated wood was not found in the adjacent soil or plant roots. The results of this study indicate that Cu in the μ-Cu-treated wood dissolves and migrates into adjacent soil and waters primarily in ionic form (i.e., Cu²⁺) and not as nano-sized Cu particles. A reduced form of Cu (Cu₂S) was identified in deep soil proximal to the treated wood, indicating strong reducing conditions. The formation of the insoluble Cu₂S effectively removes some portion of dissolved Cu from solution, reducing movement of Cu²⁺ to the water column and diminishing exposure.
Show more [+] Less [-]Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA
2013
Jacob, Donna L. | Yellick, Alex H. | Kissoon, La Toya T. | Asgary, Aida | Wijeyaratne, Dimuthu N. | Saini-Eidukat, Bernhardt | Otte, Marinus L.
Cadmium, present locally in naturally high concentrations in the Northern Plains of the United States, is of concern because of its toxicity, carcinogenic properties, and potential for trophic transfer. Reports of natural concentrations in soils are dominated by dryland soils with agricultural land uses, but much less is known about cadmium in wetlands. Four wetland categories – prairie potholes, shallow lakes, riparian wetlands, and river sediments – were sampled comprising more than 300 wetlands across four states, the majority in North Dakota. Cd, Zn, P, and other elements were analyzed by ICP-MS, in addition to pH and organic matter (as loss-on-ignition). The overall cadmium content was similar to the general concentrations in the area's soils, but distinct patterns occurred within categories. Cd in wetland soils is associated with underlying geology and hydrology, but also strongly with concentrations of P and Zn, suggesting a link with agricultural land use surrounding the wetlands.
Show more [+] Less [-]Prediction of phosphorus mobilisation in inundated floodplain soils
2008
Loeb, Roos | Lamers, Leon P.M. | Roelofs, Jan G.M.
After flooding, iron reduction in riverine wetlands may cause the release of large quantities of phosphorus. As phosphorus is an important nutrient causing eutrophication in aquatic systems, it is important to have a tool to predict this potential release. In this study we examined the P release to the soil pore water in soil cores from floodplains in the Netherlands and from less anthropogenically influenced floodplains from Poland. During the inundation experiment, concentrations of P in the pore water rose to 2–90 times the initial concentrations. P release was not directly related to the geographic origin of the soils. An important predictor variable of P release was found in the ratio between the concentration of iron-bound P and amorphous iron. This ratio may provide a practical tool for the selection of new areas for wetland creation, and for impact assessment of plans for riverine wetland restoration and floodwater storage. Mobilisation of phosphorus in floodplain wetland soils can be predicted with easily measurable soil characteristics.
Show more [+] Less [-]Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China
2020
Gu, Nitao | Song, Qingbin | Yang, Xueling | Yu, Xubiao | Li, Xiaoming | Li, Gang
Under the increasingly intensive measures for surface water restoration in China, point source discharge has been strictly regulated; however, for non-point sources, which constitute a large part of surface water pollutants, effective control has been difficult to reach. A comprehensive understanding of the characteristics of non-point source pollutants is essential for surface water improvement programs of cities such as Ningbo, on the southeast coast of China. Ningbo has made tremendous efforts in the past few years to control point source pollutants, but available data and management strategies on the non-point source pollutants are still limited. To this end, leachates of representative non-point source samples from the territory of Ningbo, including cropland and wetland soil, urban channel sediment, and poultry manure, were examined and compared focusing on the fluorescence characteristics and biodegradability of the dissolved organic matter (DOM). Results indicated that biodegradable dissolved organic carbon (BDOC) accounting for the total DOC was 46.7 ± 0.7% for cropland, wetland (56.3 ± 6.8%), non-sewage channel (60.1 ± 0.4%), sewage channel (74.5 ± 1.1%), and poultry manure (62.7 ± 4.5%). The leachates of the studied samples showed significant differences in both the amount and composition of DOM. However, a fluorescence component representing tryptophan-like substances identified by the excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis effectively predicted the BDOC variations among the studied samples. Moreover, under the studied nutrient concentrations, which were equivalent to Grade III water quality in China, nutrient limitation of microbial degradation was not observed. Threats to water quality, especially excessive consumption of dissolved oxygen, could be posed by the non-point source leachates due to their high bioavailability, large distribution, and weak nutrient restraint. Further investigations, including a quantitative evaluation of the non-point source pollution contribution, and pollutant blocking techniques are required.
Show more [+] Less [-]Assessing microbial degradation degree and bioavailability of BDE-153 in natural wetland soils: Implication by compound-specific stable isotope analysis
2020
Wang, Guoguang | Liu, Yu | Tao, Wei | Zhao, Xinda | Wang, Haixia | Lou, Yadi | Li, Na | Liu, Yuxin
Microbial degradation is an important pathway for the attenuation of polybrominated diphenyl ethers (PBDEs) in natural soils. In this study, the compound-specific stable isotope analysis (CSIA) was applied to characterize microbial degradation of BDE-153, one of the prevailing and toxic PBDE congeners, in natural wetland soils. During the 45-day incubation, the residual percentages of BDE-153 decreased to 67.9% and 73.6% in non-sterilized soils spiked with 1.0 and 5.0 μg/g, respectively, which were both much lower than those in sterilized soils (96.0% and 97.2%). This result indicated that microbial degradation could accelerate BDE-153 elimination in wetland soils. Meanwhile, the significant carbon isotope fractionation was observed in non-sterilized soils, with δ¹³C of BDE-153 shifting from −29.4‰ to −26.7‰ for 1.0 μg/g and to −27.2‰ for 5.0 μg/g, respectively, whilst not in sterilized soils. This phenomenon indicated microbial degradation could induce stable carbon isotope fractionation of BDE-153. The carbon isotope enrichment factor (εc) for BDE-153 microbial degradation was first determined as −7.58‰, which could be used to assess the microbial degradation and bioavailability of BDE-153 in wetland soils. Based on δ¹³C and εc, the new methods were developed to dynamically and quantitatively estimate degradation degree and bioavailability of BDE-153 during degradation process, respectively, which could exclude interference of physical processes. This work revealed that CSIA was a promising method to investigate in situ microbial degradation of PBDEs in field studies.
Show more [+] Less [-]Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas
2010
Rinklebe, Jörg | During, Anja | Overesch, Mark | Du Laing, Gijs | Wennrich, Rainer | Stärk, Hans-Joachim | Mothes, Sibylle
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49–0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments. Warmer environmental conditions result in higher Hg volatilization rates from floodplain soils.
Show more [+] Less [-]Nitrous oxide emission from polyculture constructed wetlands: Effect of plant species
2008
Wang, Y. | Inamori, R. | Kong, H. | Xu, K. | Inamori, Y. | Kondo, T. | Zhang, J.
Loss of nitrogen from the soil-plant system has raised environmental concern. This study assessed the fluxes of nitrous oxide (N2O) in the subsurface flow constructed wetlands (CWs). To better understand the mechanism of N2O emission, spatial distribution of ammonia-oxidizing bacteria (AOB) in four kinds of wetlands soil were compared. N2O emission data showed large temporal and spatial variation ranging from -5.5 to 32.7 mg N2O m-2 d-1. The highest N2O emission occurred in the cell planted with Phragmites australis and Zizania latifolia. Whereas, the lower emission rate were obtained in the cell planted with P. australis and Typha latifolia. These revealed that Z. latifolia stimulated the N2O emission. Transportation of more organic matter and oxygen for AOB growth may be the reason. The study of AOB also supported this result, indicating that the root structure of Z. latifolia was favored by AOB for N2O formation. Zizania latifolia has a large contribution to global warming.
Show more [+] Less [-][Flow dynamics and water balance in two freshwater wetlands]
1995
Dahl, M.