Refine search
Results 1-10 of 49
Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica
2017
Dāsa, Kr̥shṇā | Malarvannan, Govindan | Dirtu, Alin | Dulau, Violaine | Dumont, Magali | Lepoint, Gilles | Mongin, Philippe | Covaci, Adrian
Humpback whales, Megaptera novaeangliae, breeding off la Reunion Island (Indian Ocean) undergo large-scale seasonal migrations between summer feeding grounds near Antarctica and their reproductive winter grounds in the Indian Ocean. The main scope of the current study was to investigate chemical exposure of humpback whales breeding in the Indian Ocean by providing the first published data on this breeding stock concerning persistent organic pollutants (POPs), namely polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), DDT and its metabolites (DDTs), chlordane compounds (CHLs), polybrominated diphenyl ethers (PBDEs), and methoxylated PBDEs (MeO-PBDEs). Analyses of stable isotopes δ13C and δ15N in skin resulted in further insight in their feeding ecology, which was in agreement with a diet focused mainly on low trophic level prey species, such as krill from Antarctica. POPs were measured in all humpback whales in the order of HCB > DDTs > CHLs > HCHs > PCBs > PBDEs > MeO-BDEs. HCB (median: 24 ng g−1 lw) and DDTs (median: 7.7 ng g−1 lw) were the predominant compounds in all whale biopsies. Among DDT compounds, p,p′-DDE was the major organohalogenated pollutant, reflecting its long-term accumulation in humpback whales. Significantly lower concentrations of HCB and DDTs were found in females than in males (p < 0.001). Other compounds were similar between the two genders (p > 0.05). Differences in the HCB and DDTs suggested gender-specific transfer of some compounds to the offspring. POP concentrations were lower than previously reported results for humpback whales sampled near the Antarctic Peninsula, suggesting potential influence of their nutritional status and may indicate different exposures of the whales according to their feeding zones. Further investigations are required to assess exposure of southern humpback whales throughout their feeding zones.
Show more [+] Less [-]Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters
2015
Barón, E. | Giménez, J. | Verborgh, P. | Gauffier, P. | De Stephanis, R. | Eljarrat, E. | Barceló, D.
Occurrence and behaviour of classical (PBDEs) and alternative (HNs, HBB, PBEB, DBDPE and HBCD) flame retardants, together with naturally produced MeO-PBDEs, were studied in short-beaked common dolphin (Delphinus delphis), bottlenose dolphin (Tursiops truncatus) and long-finned pilot whale (Globicephala melas) in two sampling locations from Southern European waters. PBDEs, Dec 602, Dec 603, DP, α-HBCD and two MeO-PBDEs were detected in all three species. ∑PBDEs were between 17 and 2680 ng/g lw; ∑HNs were between 1.1 and 59 ng/g lw; α-HBCD levels ranged between 3.2 and 641 ng/g lw; ∑MeO-PBDEs were between 34 and 1966 ng/g lw. Bottlenose dolphins were the most contaminated species and some individuals could present health risk for endocrine disruption since levels found were above the reported threshold (1500 ng/g lw). Stable isotope analysis was used to evaluate the biomagnification capacity of these compounds. PBDEs, MeO-PBDEs and Dec 602 showed a significant positive correlation with trophic position.
Show more [+] Less [-]Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard – A comparison of concentrations in plasma sampled 15 years apart
2020
Villanger, Gro D. | Kovacs, Kit M. | Lydersen, Christian | Haug, Line S. | Sabaredzovic, Azemira | Jenssen, Bjørn M. | Routti, Heli
The objective of the present study was to investigate recent concentrations of perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard and compare them to concentrations found in white whales sampled from that same area 15 years ago. Plasma collected from live-captured white whales from two time periods (2013–2014, n = 9, and 1996–2001, n = 11) were analysed for 19 different PFASs. The 11 PFASs detected included seven C₈–C₁₄ perfluoroalkyl carboxylates (PFCAs) and three C₆–C₈ perfluoroalkyl sulfonates (PFSAs) as well as perfluorooctane sulfonamide (FOSA). Recent plasma concentrations (2013–2014) of the dominant PFAS in white whales, perfluorooctane sulfonate (PFOS; geometric mean = 22.8 ng/mL), was close to an order of magnitude lower than reported in polar bears (Ursus maritimus) from Svalbard. PFOS concentrations in white whales were about half the concentrations in harbour (Phoca vitulina) and ringed (Pusa hispida) seals, similar to hooded seals (Cystophora cristata) and higher than in walruses (Odobenus rosmarus) from that same area. From 1996 to 2001 to 2013–2014, plasma concentrations of PFOS decreased by 44%, whereas four C₉₋₁₂ PFCAs and total PFCAs increased by 35–141%. These results follow a similar trend to what has been reported in other studies of Arctic marine mammals from Svalbard. The most dramatic change has been the decline of PFOS concentrations since 2000, corresponding to the production phase-out of PFOS and related compounds in many countries around the year 2000 and a global restriction on these substances in 2009. Still, the continued dominance of PFOS in white whales, and increasing concentration trends for several PFCAs, even though exposure is relatively low, calls for continued monitoring of concentrations of both PFCAs and PFSAs and investigation of biological effects.
Show more [+] Less [-]Fin whales and microplastics: The Mediterranean Sea and the Sea of Cortez scenarios
2016
Fossi, Maria Cristina | Marsili, Letizia | Baini, Matteo | Giannetti, Matteo | Coppola, Daniele | Guerranti, Cristiana | Caliani, Ilaria | Minutoli, Roberta | Lauriano, Giancarlo | Finoia, Maria Grazia | Rubegni, Fabrizio | Panigada, Simone | Bérubé, Martine | Urbán Ramírez, Jorge | Panti, Cristina
The impact that microplastics have on baleen whales is a question that remains largely unexplored. This study examined the interaction between free-ranging fin whales (Balaenoptera physalus) and microplastics by comparing populations living in two semi-enclosed basins, the Mediterranean Sea and the Sea of Cortez (Gulf of California, Mexico). The results indicate that a considerable abundance of microplastics and plastic additives exists in the neustonic samples from Pelagos Sanctuary of the Mediterranean Sea, and that pelagic areas containing high densities of microplastics overlap with whale feeding grounds, suggesting that whales are exposed to microplastics during foraging; this was confirmed by the observation of a temporal increase in toxicological stress in whales. Given the abundance of microplastics in the Mediterranean environment, along with the high concentrations of Persistent Bioaccumulative and Toxic (PBT) chemicals, plastic additives and biomarker responses detected in the biopsies of Mediterranean whales as compared to those in whales inhabiting the Sea of Cortez, we believe that exposure to microplastics because of direct ingestion and consumption of contaminated prey poses a major threat to the health of fin whales in the Mediterranean Sea.
Show more [+] Less [-]Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True's beaked whale Mesoplodon mirus
2015
Lusher, Amy L. | Hernandez-Milian, Gema | O'Brien, Joanne | Berrow, Simon | O'Connor, Ian | Officer, Rick
When mammals strand, they present a unique opportunity to obtain insights into their ecology. In May 2013, three True's beaked whales (two adult females and a female calf) stranded on the north and west coasts of Ireland and the contents of their stomachs and intestines were analysed for anthropogenic debris. A method for identifying microplastics ingested by larger marine organisms was developed. Microplastics were identified throughout the digestive tract of the single whale that was examined for the presence of microplastics. The two adult females had macroplastic items in their stomachs. Food remains recovered from the adult whales consisted of mesopelagic fish (Benthosema glaciale, Nansenia spp., Chauliodius sloani) and cephalopods, although trophic transfer has been discussed, it was not possible to ascertain whether prey were the source of microplastics. This is the first study to directly identify microplastics <5 mm in a cetacean species.
Show more [+] Less [-]Discovery and widespread occurrence of polyhalogenated 1,1'-dimethyl-2,2'-bipyrroles (PDBPs) in marine biota
2013
Hauler, Carolin | Martin, René | Knölker, Hans-Joachim | Gaus, Caroline | Mueller, Jochen F. | Vetter, Walter
Polyhalogenated 1,1′-dimethyl-2,2′-bipyrroles (PDBPs) are halogenated natural products (HNPs) previously shown to bioaccumulate in marine mammals and birds. Since their discovery in 1999, six hexahalogenated and a few lesser halogenated congeners have been identified in diverse marine mammal samples. Here we report the identification of 17 additional hexahalogenated PDBPs in the blubber extract of a humpback dolphin (Sousa chinensis) from Queensland, Australia. Thirteen of these new PDBPs were also detected in an Australian sea cucumber (Holothuria sp.). Additional samples were also tested positive on several new PDBPs, including an Australian venus tuskfish (Choerodon venustus) as well as a white whale (Delphinapterus leucas) and a sperm whale (Physeter macrocephalus) from the Northern Hemisphere. GC/ECNI-MS-SIM quantification of the molecular ions was carried out with the help of synthesized standards. The sum concentration of PDBPs was 1.1 mg/kg lipid in the humpback dolphin and 0.48 mg/kg lipid in the sea cucumber.
Show more [+] Less [-]Polychlorinated naphthalenes (PCNs) in sub-Arctic and Arctic marine mammals, 1986–2009
2012
Rotander, Anna | van Bavel, Bert | Riget, Frank | Auðunsson, Guðjón Atli | Polder, Anuschka | Gabrielsen, Geir Wing | Víkingsson, Gísli | Mikkelsen, Bjarni | Dam, Maria
A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986–2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest ∑PCN concentrations were found in samples from the latest sampling period.
Show more [+] Less [-]Tissue distribution and trophic magnification of trace elements in typical marine mammals in Bohai and north Yellow Seas
2022
Tian, Jiashen | Lu, Zhichuang | Sanganyado, Edmond | Gan, Zhiwei | Wang, Zhen | Kong, Zhongren | Wu, Jinhao | Liu, Wenhua
A total of 20 stranded spotted seals (Phoca largha) and 9 stranded minke whales (Balaenoptera acutorostrata) were collected from Liaodong Bay and the northern part of the Yellow Sea to investigate the tissue distribution (liver, kidney, heart, lung, and muscle), risk, and trophic magnification of 13 trace elements (TEs, Hg, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Sn, V, Zn). The 13 TEs were all detected in all spotted seal and minke whale tissue samples, with mean concentrations ranging from 0.041 to 136.3 mg kg⁻¹ dry weight (dw) and 0.022 to 152.6 mg kg⁻¹ dw, respectively. Zn was the dominant contaminant in all tissues for both spotted seals and minke whales. There was tissue-specific distribution of TEs in both marine mammals, and the TEs tended to accumulate in internal organs. Significant positive correlations were found in the body length of the spotted seals and minke whales among some of the TEs, especially for Cd in the internal organs. Gender-dependent distribution of the TEs was not obtained for the spotted seal. Ecological risk evaluation for spotted seals and minke whales suggested that greater concern should be given to Hg, As, and Se. Based on the TE concentrations detected in this study and trophic levels determined by stable carbon and nitrogen isotopes, trophic level-associated biodilution was obtained for As, Cd, Co, Cu, Mn, Pb, Se, Sn, and V in the spotted seal, while Zn displayed a significant biomagnification trend with increasing trophic levels. In the case of the minke whale, As, Cd, Co, Mn, Pb, Se, and V displayed significant biomagnification trends with increasing trophic levels.
Show more [+] Less [-]Acoustic detectability of whales amidst underwater noise off the west coast of South Africa
2022
Shabangu, Fannie W. | Yemane, Dawit | Best, George | Estabrook, Bobbi J.
Anthropogenic underwater noise has been shown to negatively affect marine organisms globally; yet little to no noise research has been conducted in most African waters including South Africa's. This study aimed to quantitatively describe sources of underwater noise and effects of underwater noise on the acoustic detectability of Antarctic blue, fin, minke, humpback, and sperm whales off South Africa's west coast. Noise from vessel traffic (<35 km to the location of recorders) dominated the soundscape below 500 Hz while wind-generated noise increased with wind speed above 5 m s⁻¹ and dominated the soundscape above 500 Hz. Acoustic detectability of humpback, minke and sperm whales decreased with increasing ambient noise levels whereas blue and fin whale acoustic detectability increased with the ambient noise levels. We provide baseline information on underwater noise sources and the effects of underwater noise on whale acoustic detectability off the west coast of South Africa.
Show more [+] Less [-]Contamination knows no borders: Toxic organic compounds pollute plastics in the biodiversity hotspot of Revillagigedo Archipelago National Park, Mexico
2021
Pelamatti, Tania | Rios-Mendoza, Lorena M. | Hoyos-Padilla, Edgar M. | Galván-Magaña, Felipe | De Camillis, Roberto | Marmolejo-Rodríguez, Ana J. | González-Armas, Rogelio
Plastic pollution is ubiquitous and not even remote protected islands are safe from it. Floating debris can adsorb toxic compounds that concentrate on their surface, being available to the animals that ingest them. For this reason, a baseline study of plastic pollution was conducted in the remote Revillagigedo Archipelago, in the Mexican Pacific Ocean. In 47 manta net samples an average of 4.8 plastics/1000m² was found, 73% of the pieces being <5 mm. Polyethylene and polypropylene were the most common polymers found. The chemical analysis of organic pollutants revealed that organochlorine pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls are adsorbed on the plastics collected in the area. Filter feeding megafauna such as humpback whales, manta rays and whale sharks could ingest contaminated micro and macroplastics. Plastics were found also on the beach, where they are available to the ingestion by terrestrial animals, including endemic species endangered to extinction.
Show more [+] Less [-]