Refine search
Results 1-10 of 41
Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study Full text
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Show more [+] Less [-]Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis Full text
2018
You, Chengming | Wu, Fuzhong | Yang, Wanqin | Xu, Zhenfeng | Tan, Bo | Yue, Kai | Ni, Xiangyin
To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future.
Show more [+] Less [-]Photosynthetic behavior of woody species under high ozone exposure probed with the JIP-test: A review Full text
2007
Bussotti, F. | Strasser, R.J. | Schaub, M.
Visible ozone symptoms on leaves are expressions of physiological mechanisms to cope with oxidative stresses. Often, the symptoms consist of stippling, which corresponds to localized cell death (hypersensitive response, HR), separated from healthy cells by a layer of callose. The HR strategy tends to protect the healthy cells and in most cases the efficiency of chlorophyll to trap energy is not affected. In other cases, the efficiency of leaves to produce biomass declines and the plant loses its photosynthetic apparatus replacing it with a new, more efficient one. Another strategy consists of the production of pigments (anthocyanins), and leaves become reddish. In these cases, the most significant physiological manifestation consists of the enhanced dissipation of energy. These different behavior patterns are reflected in the initial events of photosynthetic activity, and can be monitored with techniques based on the direct fluorescence of chlorophyll a in photosystem II, applying the JIP-test. Analytical techniques based on the direct fluorescence of chlorophyll a, allow us to discriminate species-specific physiological behavior in relation to ozone air pollution.
Show more [+] Less [-]Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings Full text
2014
Zhang, Weiwei | Feng, Zhaozhong | Wang, Xiaoke | Niu, Junfeng
To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O3), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O3 (AA + 60 ppb O3, E-O3) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O3 exposure. Results indicated that E-O3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O3 risk on evergreen woody species.
Show more [+] Less [-]Responses of native broadleaved woody species to elevated ozone in subtropical China Full text
2012
Zhang, Weiwei | Feng, Zhaozhong | Wang, Xiaoke | Niu, Junfeng
To assess ozone sensitivity of subtropical broadleaved tree species and explore possible underlying mechanisms, six evergreen and two deciduous native species were exposed to either charcoal-filtered air or elevated O₃ (E-O₃, ∼150ppb) for one growing season. Initial visible symptoms in deciduous species appeared much earlier than those in evergreen species. The species which first showed visible symptoms also had the largest reductions in biomass. E-O₃ induced significant decreases in photosynthesis rate, chlorophyll content and antioxidant capacity but a significant increase in malondialdehyde content in two deciduous species and two evergreen species (Cinnamomum camphora and Cyclobalanopsis glauca). Except C. glauca, however, E-O₃ had no significant effects on stomatal conductance (gₛ), total phenols and ascorbate contents. Difference in O₃ sensitivity among all species was strongly attributed to specific leaf mass rather than gₛ. It suggests that some subtropical tree species will be threatened by rising O₃ concentrations in the near future.
Show more [+] Less [-]An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and n-alkanes Full text
2014
Zhang, Shengyin | Li, Shuanglin | Dong, Heping | Zhao, Qingfang | Lu, Xinchuan | Shi, Ji’an
By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments.
Show more [+] Less [-]Physiological indicators and susceptibility of plants to acidifying atmospheric pollution: a multivariate approach
1995
Soares, A. | Ming, J.Y. | Pearson, J. (Department of Biology (Darwin Building), University College London, Gower Street, London WC1E 6BT (United Kingdom))
Baru (Dipteryx alata Vogel), a woody species characteristic of Cerrado and its phytoremediation potential Full text
2021
Niedack, Ludmila Osório Castilho | da Silva de Souza, Lucas Garcia | de Oliveira Alves, Laura Eliza | Damiani, Cláudia Roberta
Baru (Dipteryx alata Vogel) is a native tree plant, widely distributed in Brazil, and has a growth and development in acidic soils like Cerrado, indicating a probable tolerance to adverse soil conditions, such as the high concentration of metals and the acidic pH. Due to the lack of information about the tolerance of this species to metals and the possibility of being used in the recovery of degraded areas and/or in phytoremediation, this work was developed with the objective of evaluating the in vitro germination and growth capacity of baru in medium supplemented with different concentrations of aluminum, iron, and manganese, as well as through chemical analysis, to determine the concentration of metals accumulated in cultivated plants in these conditions. The treatments consisted in different concentrations of metals: aluminum, Al³⁺ (0, 3.5, 7.0, 10.5, 21.0, or 42.0 mg L⁻¹); iron, Fe³⁺ (0, 2.5, 4.9, 7.4, 14.7, or 29.4 mg L⁻¹); and manganese, Mn²⁺ (0, 0.4, 0.8, 1.2, 2.4, or 4.8 mg L⁻¹) added to the medium WPM. The tested values were based on using the lower concentration as the limit value, calculated based on risk to human health in accordance with CONAMA resolution 420/2009 for groundwater. At 60 days of cultivation, the percentage of germination, the average number of leaves, the length of the main root and the aerial part, the fresh and dry mass of the aerial part and the root system and the cations concentration Al³⁺, Fe³⁺ and Mn²⁺ in the plant biomass, were evaluated. The results showed that under the conditions in which the experiment was conducted, germination and in vitro growth of baru were not affected by the presence in high concentrations of any of the evaluated metals, with no differences in the percentage of germination and plant growth, as well as typical toxicity characteristics were not observed, such as changes in root morphology, chlorosis, or tissue oxidation. The absence of toxicity symptoms in baru plants, in the presence of Al³⁺, Fe³⁺, and Mn²⁺, indicate that the species is tolerant to these metals. The accumulation of Al³⁺ and Fe³⁺ in the plant biomass at the beginning of growth, simultaneously with the increase in the concentrations of these elements in the culture medium, indicates that this species can be used for phytoremediation, because it is a probable accumulator of these elements throughout its development, given the presence in significant concentrations of these elements also in the seeds.
Show more [+] Less [-]Sub-Arctic Field Degradation of Metsulfuron-Methyl in Two Alaskan Soils and Microbial Community Composition Effects Full text
2020
Tomco, Patrick L. | Seefeldt, Steven S. | Rodriguez-Baisi, Katinna | Hatton, Jasmine J. | Duddleston, Khrystyne N.
Metsulfuron-methyl is a sulfonylurea herbicide, primarily with postemergence activity but also with occasional pre-emergent activity, used for control of weeds and woody plants on agricultural lands and natural areas. The active ingredient is popular in Alaska as Ally XP formulation; little is known about its high-latitude environmental behavior and potential adverse impacts on soil health in cold regions. Our study determined field degradation rates at two experimental farms in Alaska and assessed whether laboratory-incubated soil amended at 1× or 100× label rates would adversely impact microbial community diversity. DT50 was observed at 4.12–5.13 days, with the compound below 1 μg/kg detection limit at 90 days. Interestingly, this is faster than the reported range of field half-lives in the literature (7–42 days). Microbial community composition was not affected by MSM at both 1× and 100× rates. High-latitude regions exhibit extreme summer photoperiods that may exacerbate the MSM degradation/dissipation rate; we postulate that timing of application may have large impacts on MSM attenuation.
Show more [+] Less [-]