Refine search
Results 1-10 of 370
Outdoor light at night, overweight, and obesity in school-aged children and adolescents
2022
Lin, Li-Zi | Zeng, Xiao-Wen | Deb, Badhan | Tabet, Maya | Xu, Shu-Li | Wu, Qi-Zhen | Zhou, Yang | Ma, Hui-Min | Chen, Duo-Hong | Chen, Gong-Bo | Yu, Hong-Yao | Yang, Bo-Yi | Hu, Qiang | Yu, Yun-Jiang | Dong, Guang-Hui | Hu, Liwen
Previous studies have indicated that outdoor light at night (LAN) is associated with a higher prevalence of overweight or obesity in adults. However, the association of LAN levels with overweight or obesity in children is still unknown. This study utilized data from the Seven Northeastern Cities study, which included 47,990 school-aged children and adolescents (ages 6–18 years). Outdoor LAN levels were measured using satellite imaging data. Weight and height were used to calculate age-sex-specific body mass index (BMI) Z-scores based on the World Health Organization (WHO) growth standards. Overweight status and obesity were defined using the Chinese standard. Information regarding socioeconomic status, sleep-related characteristics, and obesogenic factors were obtained using a questionnaire. A generalized linear mixed model examined the associations of outdoor LAN levels (in quartiles) with the outcomes of interest. Compared to children in the lowest quartile of outdoor LAN levels, children exposed to higher outdoor LAN levels had larger BMI Z-scores and higher odds of being overweight (including obesity) or obese, with the largest estimates in the third quartile [BMI Z-score: β = 0.26, 95% CI: 0.18–0.33; overweight (including obesity): OR = 1.40, 95% CI: 1.25–1.56; obesity: OR = 1.46, 95% CI: 1.29–1.65]. There was a significant sex difference (Pᵢₙₜₑᵣₐcₜᵢₒₙ<0.001) in the association of outdoor LAN levels with BMI Z-scores, and the association was stronger in males. Results remained robust following multiple sensitivity analyses and the adjustment of sleep-related characteristics, obesogenic factors, and environmental exposures. Our findings suggest that higher outdoor LAN levels are associated with larger BMI Z-scores and greater odds of overweight (including obesity) and obesity in school-aged children and adolescents. Further, the association between outdoor LAN levels and BMI Z-scores is stronger in males. Future studies with exposure assessments that consider both outdoor and indoor LAN exposures are needed.
Show more [+] Less [-]Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
Show more [+] Less [-]Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in mainland China, 2013–2019
2022
Meng, Xia | Wang, Weidong | Shi, Su | Zhu, Shengqiang | Wang, Peng | Chen, Renjie | Xiao, Qingyang | Xue, Tao | Geng, Guannan | Zhang, Qiang | Kan, Haidong | Zhang, Hongliang
Evaluating ozone levels at high resolutions and accuracy is crucial for understanding the spatiotemporal characteristics of ozone distribution and assessing ozone exposure levels in epidemiological studies. The national models with high spatiotemporal resolutions to predict ground ozone concentrations are limited in China so far. In this study, we aimed to develop a random forest model by combining ground ozone measurements from fixed stations, ozone simulations from the Community Multiscale Air Quality (CMAQ) modeling system, meteorological parameters, population density, road length, and elevation to predict ground maximum daily 8-h average (MDA8) ozone concentrations at a daily level and 1 km × 1 km spatial resolution. The model cross-validation R² and root mean squared error (RMSE) were 0.80 and 20.93 μg/m³ at daily level in 2013–2019, respectively. CMAQ ozone simulations and near-surface temperature played vital roles in predicting ozone concentrations among all predictors. The population-weighted median concentrations of predicted MDA8 ozone were 89.34 μg/m³ in mainland China in 2013, and reached 100.96 μg/m³ in 2019. However, the long-term temporal variations among regions were heterogeneous. Central and Eastern China, as well as the Southeast Coastal Area, suffered higher ozone pollution and higher increased rates of ozone concentrations from 2013 to 2019. The seasonal pattern of ozone pollution varied spatially. The peak-season ozone pollution with the highest 6-month ozone concentrations occurred in different months among regions, with more than half domain in April–September. The predictions showed that not only the annual mean concentrations but also the percentages of grid-days with MDA8 ozone concentrations higher than 100/160 μg/m³ have been increasing in the past few years in China; meanwhile, majority areas in mainland China suffered peak-season ozone concentrations higher than the air quality guidelines launched by the World Health Organization in September 2021. The proposed model and ozone predictions with high spatiotemporal resolution and full coverage could provide health studies with flexible choices to evaluate ozone exposure levels at multiple spatiotemporal scales in the future.
Show more [+] Less [-]Associations between low-dose triclosan exposure and semen quality in a Chinese population
2022
Yuan, Guanxiang | Ma, Yue | Zeng, Yuxing | Pan, Haibin | Liu, Peiyi | Liu, Yu | Liu, Guihua | Cheng, Jinquan | Guo, Yinsheng
The antimicrobial agent triclosan (TCS) has attracted much attention worldwide because of its pervasive existence in the human body and environment. TCS exposure has been reported to be associated with decreased male reproductive function. However, few studies have investigated these associations in humans. To examine the relationship between TCS in urine and male semen quality. A total of 406 men from a reproductive clinic were enrolled in this study. Urinary TCS concentrations were determined by ultra-high performance liquid chromatography–electrospray ionization tandem mass spectrometry. Sixteen semen parameters were assessed according to the guidelines of World Health Organization (WHO), including parameters for volume, count, motility, and motion. We used multivariate linear regression models and restricted cubic splines to estimate the linear and non-linear associations between TCS exposure and semen parameters, respectively. Logistical regression models were further applied to explore the associations with abnormal semen quality. TCS was detected in 74.6% of urine specimens. The monotonous trend of TCS tertiles and continuous TCS levels with all semen quality parameters were not observed in multivariate linear regression models (p > 0.05). However, compared with those in the lowest tertile, subjects in the second tertile showed significantly higher linearity and wobble (p < 0.05), indicating potential effects on sperm motion. In the models using restricted cubic splines with 3–5 knots, there were no significant non-linear associations between TCS exposure and any semen quality parameter. In addition, TCS tertiles were not associated with the risk of abnormal semen quality (i.e., count and motility) in the logistical regression models. Our results revealed that low-level TCS exposure may have limited (none or modest) effects on male semen quality, potentially inducing some fluctuations. Further mechanistic studies on low levels of exposure are needed.
Show more [+] Less [-]Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China
2021
Rupakheti, Dipesh | Yin, Xiufeng | Rupakheti, Maheswar | Zhang, Qianggong | Li, Ping | Rai, Mukesh | Kang, Shichang
To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013–June 2019. The annual mean PM₂.₅, PM₁₀, SO₂, NO₂, CO, and O₃ concentrations ranged from 51.44 to 59.54 μg m⁻³, 128.43–155.28 μg m⁻³, 10.99–17.99 μg m⁻³, 26.27–31.71 μg m⁻³, 1.04–1.32 mg m⁻³, and 55.27–65.26 μg m⁻³, respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM₁₀₋₂.₅) was predominant, particularly during the spring and summer seasons. The highest PM₂.₅/PM₁₀ ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM₂.₅ (PM₁₀) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. ∼5–6 (∼7–8). Very high ambient PM concentrations were recorded during March 19–22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM₂.₅ (PM₁₀) concentrations ∼8–54 (∼26–115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m⁻³. Such high PM₂.₅ and PM₁₀ concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region.
Show more [+] Less [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Show more [+] Less [-]Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world
2020
Rodríguez-Urrego, Daniella | Rodríguez-Urrego, Leonardo
On December 31, 2019, the Chinese authorities reported to the World Health Organization (WHO) the outbreak of a new strain of coronavirus that causes a serious disease in the city of Wuhan, China. This outbreak was classified as SARS-CoV2 and is the cause of the COVID-19 disease. On March 11, 2020, the WHO declares it a Pandemic and today it is considered the greatest challenge in global health that humanity has faced since World War II and it is estimated that between 40 and 60% of the population worldwide will catch the virus. This has caused enormous challenges in countries around the world in social, economic, environmental and obviously health issues. These challenges are mainly due to the effects of the established quarantines in almost all capitals and major cities around the world, from Asia, Europe to America. However, these lockdown which began worldwide from January 23, have had a significant impact on the environment and on the air quality of cities as recently reported by NASA (National Aeronautics and Space Administration) and ESA (European Space Agency), with reductions according to them of up to 30% in some of the epicenters such as the case of Wuhan. Knowing that air pollution causes approximately 29% of lung cancer deaths, 43% of COPD deaths, and 25% of ischemic heart disease deaths, it is important to know the effects of quarantines in cities regarding air quality to take measures that favor populations and urban ecosystems when the emergency ends. Therefore, this paper describes the behavior of PM₂.₅ emissions particulate matter from the 50 most polluted capital cities in the world according to the WHO, measured before-after the start of the quarantine. Likewise, the impact at the local and global level of this emissions behavior, which averaged 12% of PM₂.₅ decrease in these cities.
Show more [+] Less [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Show more [+] Less [-]Biochemical profile and gene expression of Clarias gariepinus as a signature of heavy metal stress
2020
Swaleh, Sadiya Binte | Banday, Umarah Zahoor | Asadi, Moneeb-Al | Usmani, Nazura
Heavy metals have been found in increasing concentrations in the aquatic environment. Fishes exposed to such metals have altered gene expression, serum profiles, tissue histology and bioindices that serve as overall health biomarkers. The heavy metals (Ni, Cd, and Cr) accumulated in water and fish tissues, were beyond the permissible limits defined by the Central Pollution Control Board/World Health Organization. Metallothionein (MT) and glutathione peroxidase (GPX) genes expression patterns highlighted the metal-specific exposure of fish. An increased fold change of genes against beta-actin serves as a potential feature for toxicity. Metal toxicity is also reflected by an increased level of digestive enzymes (amylase and lipase) in the serum and alterations in values of reproductive hormones (11-Ketotestosterone and progesterone). Total serum bilirubin attribute to the liver and biliary tract disease in fishes. Histopathological studies show cellular degeneration, breakage, vacuolization signifying the chronic stress.
Show more [+] Less [-]Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan
2019
Ali, Waqar | Mushtaq, Nisbah | Javed, Tariq | Zhang, Hua | Ali, Kamran | Rasool, Atta | Farooqi, Abida
Stable isotopes ratios (‰) of Hydrogen (δ2H) and Oxygen (δ1⁸O) were used to trace the groundwater recharge mechanism and geochemistry of arsenic (As) contamination in groundwater from four selected sites (Larkana, Naudero, Ghari Khuda Buksh and Dokri) of Larkana district. The stable isotope values of δ2H and δ1⁸O range from 70.78‰ to −56.01‰ and from −10.92‰ to −7.35‰, relative to Vienna Standard for Mean Ocean Water (VSMOW) respectively, in all groundwater samples, thus indicating the recharge source of groundwater from high-salinity older water. The concentrations of As in all groundwater samples were ranged from 2 μg/L to 318 μg/L, with 67% of samples exhibited As levels exceeding than that of World Health Organization (WHO) permissible limit 10 μg/L and 42% of samples expressed the As level exceeding than that of the National Environmental Quality Standard (NEQS) 50 μg/L. The leaching and vertical mixing with return irrigation water are probably the main processes controlling the enrichment of As in groundwater of Larkana, Naudero, Ghari Khuda Buksh and Dokri. The weathering of minerals mostly controlled the overall groundwater chemistry; rock-water interactions and silicate weathering generated yielded solutions that were saturated in calcite and dolomite in two areas while halite dissolution is prominent with high As area.
Show more [+] Less [-]