Refine search
Results 1-10 of 125
Assessment and control of VOCs emitted from gas stations in Tehran, Iran Full text
2015
Eisaei, Hamid Reza | Ahmadi Dehrashid, Seyed Shaho | Khani, Mohammad Reza | Hashemi, Seyed Mukhtar
In this research, gasoline vapours including Benzene, Toluene, Xylene (BTX) and Total Volatile Organic Compounds (TVOCs) emitted from vent pipes of underground storage tanks (USTs) were measured at six gas stations in Tehran. Thereafter, gas station No. 29 was selected as a pilot station and equipped with a vapour control system. The vapours were measured during the summer of 2013 and winter of 2014 in two states, before and at the time of gasoline discharge from a petrol tanker to the UST. The results reveal that the average of BTX and TVOCs are 161.22, 200.81, 229 and 647.01 ppm, respectively, higher than the World Health Organisation (WHO) guidelines. The average of TVOCs and BTX in the situation in which the control system is inactive at the pilot station, are 259.13, 55.9, 73.03 and 96.88 ppm, respectively. After activating the control system at the pilot station, the VOCs were reduced by 0.01 ppm. Almost 99.99% control was obtained for this system and 87% of the people living around the pilot station were satisfied and no longer had any complaints about the bad odour of VOCs. It can be concluded that gasoline discharge from the petrol tanker to UST, is the main reason behind the overproduction of VOCs in Tehran's gas stations (P<0.001). So, the most important element is to reduce VOCs at Tehran's gas stations by installing a vapour control systems in all the stations and activating the systems at the time of gasoline discharge.
Show more [+] Less [-]Fate of spilled xylene as influenced by soil moisture content.
1987
Aurelius M.W. | Brown K.W.
Microbiological remediation of waste-oil polluted soils -Ecotoxicological and toxicological considerations.
1994
Rippen G. | Held T. | Ripper P.
A waste-oil contaminated site situated near a river is supposed to be cleaned-up by means of different but complementary methods. On the basis of a research project, target values have been developed in close cooperation between the participant parties for the saturated and the unsaturated soil layers. The clean-up targets are introduced and discussed.
Show more [+] Less [-]Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park Full text
2021
Chen, Ruonan | Li, Tingzhen | Huang, Chengtao | Yu, Yunjiang | Zhou, Li | Hu, Guocheng | Yang, Fumo | Zhang, Liuyi
Health risks of typical benzene series and halocarbons (BSHs) in a densely populated area near a large-scale chemical industrial park were investigated. Ambient and indoor air and tap water samples were collected in summer and winter; and the concentration characteristics, sources, and exposure risks of typical BSH species, including five benzene series (benzene, toluene, ethylbenzene, o-xylene, m,p-xylene) and five halocarbons (dichloromethane, trichloromethane, trichloroethylene, tetrachloromethane, and tetrachloroethylene), were analysed. The total mean concentrations of BSHs were 53.32 μg m⁻³, 36.29 μg m⁻³, and 26.88 μg L⁻¹ in indoor air, ambient air, and tap water, respectively. Halocarbons dominated the total BSHs with concentrations relatively higher than those in many other industrial areas. Industrial solvent use, industrial processes, and vehicle exhaust emissions were the principal sources of BSHs in ambient air. The use of household products (e.g., detergents and pesticides) was the principal source of indoor BSHs. Inhalation is the primary human exposure route. Ingestion of drinking water was also an important exposure route but had less impact than inhalation. Lifetime non-cancer risks of individual and cumulative BSHs were below the threshold (HQ = 1), indicating no significant lifetime non-cancer risks in the study area. However, tetrachloromethane, benzene, trichloromethane, ethylbenzene, and trichloroethylene showed potential lifetime cancer risk. The cumulative lifetime cancer risks exceeded the tolerable benchmark (1 × 10⁻⁴), indicating a lifetime cancer risk of BSHs to residents near the chemical industry park. This study provides valuable information for the management of public health in chemical industrial parks.
Show more [+] Less [-]Occupational exposure to volatile organic compounds and health risks in Colorado nail salons Full text
2019
Lamplugh, Aaron | Harries, Megan | Xiang, Feng | Trinh, Janice | Hecobian, Arsineh | Montoya, Lupita D.
Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 μg m−3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 μg m−3, followed by benzene (3.13–51.8 μg m−3), xylenes (5.16–34.6 μg m−3), and ethylbenzene (1.65–9.52 μg m−3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10−6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10−4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.
Show more [+] Less [-]Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution Full text
2019
Zeng, Lewei | Fan, Gang-Jie | Lyu, Xiaopu | Guo, Hai | Wang, Jia-Lin | Yao, Dawen
Peroxyacetyl nitrate (PAN) is an important reservoir of atmospheric nitrogen, modulating reactive nitrogen cycle and ozone (O3) formation. To understand the origins of PAN, a field measurement was conducted at Tung Chung site (TC) in suburban Hong Kong from October to November 2016. The average level of PAN was 0.63 ± 0.05 ppbv, with a maximum of 7.30 ppbv. Higher PAN/O3 ratio (0.043–0.058) was captured on episodes, i.e. when hourly maximum O3 exceeded 80 ppbv, than on non-episodes (0.01), since O3 production was less efficient than PAN when there was an elevation of precursors (i.e. volatile organic compounds (VOCs) and nitrogen oxide (NOx)). Model simulations revealed that oxidations of acetaldehyde (65.3 ± 2.3%), methylglyoxal (MGLY, 12.7 ± 1.2%) and other oxygenated VOCs (OVOCs) (8.0 ± 0.6%), and radical cycling (12.2 ± 0.8%) were the major production pathways of peroxyacetyl (PA) radical, while local PAN formation was controlled by both VOCs and nitrogen dioxide (NO2). Among all VOC species, carbonyls made the highest contribution (59%) to PAN formation, followed by aromatics (26%) and biogenic VOCs (BVOCs) (10%) through direct oxidation/decomposition. Besides, active VOCs (i.e. carbonyls, aromatics, BVOCs and alkenes/alkynes) could stimulate hydroxyl (OH) production, thus indirectly facilitating the PAN formation. Apart from primary emissions, carbonyls were also generated from oxidation of first-generation precursors, i.e., hydrocarbons, of which xylenes contributed the most to PAN production. Furthermore, PAN formation suppressed local O3 formation at a rate of 2.84 ppbv/ppbv, when NO2, OH and hydroperoxy (HO2) levels decreased and nitrogen monoxide (NO) value enhanced. Namely, O3 was reduced by 2.84 ppbv per ppbv PAN formation. Net O3 production rate was weakened (∼36%) due to PAN photochemistry, so as each individual production and loss pathway. The findings advanced our knowledge of atmospheric PAN and its impact on O3 production.
Show more [+] Less [-]Evaluation of the effectiveness of air pollution control measures in Hong Kong Full text
2017
Lyu, X.P. | Zeng, L.W. | Guo, H. | Simpson, I.J. | Ling, Z.H. | Wang, Y. | Murray, F. | Louie, P.K.K. | Saunders, S.M. | Lam, S.H.M. | Blake, D.R.
From 2005 to 2013, volatile organic compounds (VOCs) and other trace gases were continuously measured at a suburban site in Hong Kong. The measurement data showed that the concentrations of most air pollutants decreased during these years. However, ozone (O3) and total non-methane hydrocarbon levels increased with the rate of 0.23 ± 0.03 and 0.34 ± 0.02 ppbv/year, respectively, pointing to the increasing severity of photochemical pollution in Hong Kong. The Hong Kong government has ongoing programs to improve air quality in Hong Kong, including a solvent program implemented during 2007–2011, and a diesel commercial vehicle (DCV) program since 2007. From before to after the solvent program, the sum of toluene, ethylbenzene and xylene isomers decreased continuously with an average rate of −99.1 ± 6.9 pptv/year, whereas the sum of ethene and propene increased by 48.2 ± 2.0 pptv/year from before to during the DCV program. Despite this, source apportionment results showed that VOCs emitted from diesel exhaust decreased at a rate of −304.5 ± 17.7 pptv/year, while solvent related VOCs decreased at a rate of −204.7 ± 39.7 pptv/year. The gasoline and liquefied petroleum gas vehicle emissions elevated by 1086 ± 34 pptv/year, and were responsible for the increases of ethene and propene. Overall, the simulated O3 rate of increase was lowered from 0.39 ± 0.03 to 0.16 ± 0.05 ppbv/year by the solvent and DCV programs, because O3 produced by solvent usage and diesel exhaust related VOCs decreased (p < 0.05) by 0.16 ± 0.01 and 0.05 ± 0.01 ppbv/year between 2005 and 2013, respectively. However, enhanced VOC emissions from gasoline and LPG vehicles accounted for most of the O3 increment (0.09 ± 0.01 out of 0.16 ± 0.05 ppbv/year) in these years. To maintain a zero O3 increment in 2020 relative to 2010, the lowest reduction ratio of VOCs/NOx was ∼1.5 under the NOx reduction of 20–30% which was based on the emission reduction plan for Pearl River Delta region in 2020.
Show more [+] Less [-]Risk assessment and dose-effect of co-exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on pulmonary function: A cross-sectional study Full text
2022
Liao, Qilong | Zhang, Yan | Ma, Rui | Zhang, Zhaorui | Ji, Penglei | Xiao, Minghui | Du, Rui | Liu, Xin | Cui, Ying | Xing, Xiumei | Liu, Lili | Dang, Shanfeng | Deng, Qifei | Xiao, Yongmei
Inhalation is the most frequent route and the lung is the primary damaged organ for human exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). However, there is limited information on the risk and dose-effect of the BTEXS mixture on pulmonary function, particularly the overall effect. We conducted a cross-sectional study in a petrochemical plant in southern China. Spirometry and cumulative exposure dose (CED) of BTEXS were used to measure lung function and exposure levels for 635 workers in 2020, respectively. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV₁) were tested and interpreted as percentages to predicted values [FVC or FEV₁% predicted], and FEV₁ to FVC ratio [FEV₁/FVC (%)]. We found the reduction in FVC% predicted and the risk of lung ventilation dysfunction (LVD) and its two subtypes (mixed and restrictive ventilation dysfunction, MVD, and MVD) were significantly associated with BTEXS individuals. In addition, pulmonary function damage associated with BTEXS was modified by the smoking status and age. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-effect on lung function damage induced by the BTEXS mixture. Our results show wqs, an index of weighted quartiles for BTEXS, was potentially associated with the reduction in FVC and FEV₁% predicted with the coefficients [95% confidence intervals (CI)] between −1.136 (−2.202, −0.070) and −1.230 (−2.265, −0.195). Odds ratios (ORs) and 95% CIs for the wqs index of LVD, MVD, and RVD were 1.362 (1.129, 1.594), 1.323 (1.084, 1.562), and 1.394 (1.096, 1.692), respectively. Furthermore, xylene, benzene, and toluene in the BTEXS mixture potentially contribute to the development of lung function impairment. Our novel findings demonstrated the dose-response relationships between pulmonary function impairment and the BTEXS mixture and disclosed the potential key pollutants in the BTEXS mixture.
Show more [+] Less [-]Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics Full text
2021
Farooq, Abid | Moogi, Surendar | Kwon, Eilhann E. | Lee, Jechan | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
This work investigated the impact of pyrolysis medium and catalyst on the production of bio-BTX (benzene, toluene, and xylene) from Quercus Mongolica (Q. Mongolica) via catalytic pyrolysis. Two different pyrolysis media (N₂ and CH₄) and five different zeolite catalysts (HY, HBeta, HZSM-5, 1 wt% Ni/HZSM-5, and 1 wt% Ga/HZSM-5) were considered for the Q. Mongolica pyrolysis. The HZSM-5 yielded more BTX than the HY and HBeta due to its strong acidity. The employment of CH₄ as the pyrolysis medium improved the BTX yield (e.g., 2.7 times higher total BTX yield in CH₄ than in N₂) and resulted in low coke yield (e.g., 5.27% for N₂-pyrolysis and 2.57% for CH₄-pyrolysis) because the CH₄-drived hydrogen simulated a hydropyrolysis condition and facilitated dehydroaromatization reaction. CH₄ also led to direct coupling, Diels-Alder, and co-aromatization reactions during the pyrolysis, contributing to enhancing the BTX yield. The addition of Ga to the HZSM-5 could further increase the BTX yield by means of facilitating hydrocracking/demethylation and methyl radical formation from CH₄ assisting the generation of >C2 alkenes that could be further converted into BTX on acid sites of the HZSM-5.
Show more [+] Less [-]Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong Full text
2021
Lv, Daqi | Lü, Sihua | Tan, Xin | Shao, Min | Xie, Shaodong | Wang, Lingfeng
An in-depth study was conducted to quantify and characterize VOC emissions from a petroleum refinery located in Shandong, China. The VOC emission inventory established in this study showed that storage tanks were the largest emission source, accounting for 56.4% of total emissions, followed by loading operations, wastewater collection and treatment system, process vents, and equipment leaks. Meanwhile, the localization factors for refining, storage tanks and loading operations were calculated, which were 1.33, 0.75 and 0.31g VOCs/kg crude oil refined. Furthermore, the characteristics of fugitive and organized emissions were determined for various processes and emission sources using a gas chromatography–mass spectrometry/flame ionization detection (GC-MS/FID) system. Most samples contained mainly alkanes, but the total VOC concentrations and key species varied greatly among processes. The source profile of the refinery, synthesized using the weighted average method, indicated that cis-2-butene (14.5%), n-pentane (10.2%), n-butane (7.4%), isopentane (6.5%) and MTBE (5.9%) were the major species released by this refinery. Assessment of O₃ and secondary organic aerosol formation potentials were completed, and the results indicated that cis-2-butene, m/p-xylene, toluene, n-pentane, isopentane, benzene, o-xylene and ethylbenzene were the active species for which treatment should be prioritized.
Show more [+] Less [-]