Refine search
Results 1-10 of 227
The possibility of removing heavy metals from waste waters by natural zeolites
1997
Pasalic, S. | Grbavcic, M. | Barbic, F. | Pljakic, E. (Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd (Yugoslavia))
Over the last several years, the investigations of the natural zeolites application in the sorption processes have been intensified. Purification of waste waters in order to remove lead, cadmium, copper and other heavy metals, is one significant example of such application. In this paper, the investigations results on characteristics of the natural and chemically activated zeolites from the region of Vranje (Serbia, Yugoslavia), are presented. The experiments with zeolites were performed after determination of their physico-chemical characteristics. Adsorptive characteristics were investigated under laboratory conditions, in a liquid medium, depending on granulation and concentration of the heavy metals. As the obtained results show, these natural materials can be used to remove heavy metals from the waste waters.
Show more [+] Less [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics Full text
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Show more [+] Less [-]Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater Full text
2022
G, Alagarsamy | P, Nithiya | R, Sivasubramanian | R, Selvakumar
Removal of multi-ionic contaminants from water resources has been a major challenge faced during the treatment of water for drinking and industrial applications. In the present study, varying composition of magnesium doped hydroxyapatite (Mg-HAp) and zeolite nanocomposite embedded porous polymeric beads were synthesized using solvent displacement method and its sorption efficiency towards multi-ion contaminant (such as Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, Th, U, V and Zn) was investigated in aqueous solution and spiked groundwater. The prepared beads were characterized using suitable techniques like high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) equation. The surface area and pore radius of the beads varied from 6.996 to 66.469 m²/g and 1.698–3.960 nm respectively according to the composition of the bead. The control bead without nanocomposite showed maximum surface area. Multi-ion adsorptions onto beads were confirmed using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray photoelectron spectrophotometer (XPS). The sorption efficiency was high at pH 5 owing to its anionic surface charge leading to an increase in affinity towards the cations. For validating field application, selected high performance beads were tested in multi-ion spiked groundwater. The results indicated that the Mg-HAp nanocomposite bead dominate all the other bead compositions with more than 90% removal efficiency for most of the multi-ion contaminants. The feasible adsorption mechanism has been discussed. This adsorption study revealed that the Mg-HAp nanocomposite bead is a promising material that is cost-effective, non-toxic, biodegradable, eco-friendly and highly efficient towards the removal of multi-ionic contaminants from groundwater.
Show more [+] Less [-]Effects of composite environmental materials on the passivation and biochemical effectiveness of Pb and Cd in soil: Analyses at the ex-planta of the Pak-choi root and leave Full text
2022
Wang, An | Wang, Yao | Zhao, Peng | Huang, Zhanbin
Passivation of soil heavy metals using environmental materials is an important method or important in situ remediation measure. There are more studies on inorganic environmental materials for heavy metal passivation, but not enough studies on organic and their composite environmental materials with inorganic ones. In order to reveal the passivation effect of coal-based ammoniated humic acid (CAHA), biochemical humic acid (BHA), biochar (BC) and other organic types and inorganic environmental materials such as zeolites (ZL) on soil heavy metals and their biological effectiveness. The microstructures of these materials were analyzed by Scanning electron microscope (SEM). The main components of the environmental materials were analyzed by Energy dispersive spectrometer (EDS), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction spectrum (XRD) to elucidate the mechanism of passivation of heavy metals in soil by these environmental materials. The study was conducted to investigate the effects of different types of environmental materials and their combinations on the passivation effect and biological effectiveness of Pb and Cd complex contamination in soil by means of soil incubation and pot experiments using single-factor and multifactor multilevel orthogonal experimental designs. Soil incubation experiments proved that the effective state of soil Pb and Cd in T₇ was reduced by 13.40% and 11.07%, respectively. The extreme difference analysis determined the optimized formulation of soil lead and cadmium passivation as BHA: CAHA: BC: ZL = 3.5:5:20:10. The pot experiment proved that the application of composite environmental materials led to the reduction of lead and cadmium content and increase of biomass of Pak-choi, and the optimal dosage of optimized composite environmental materials was 23.1 g/kg.
Show more [+] Less [-]Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems Full text
2021
Liu, Lin | Li, Jie | Xin, Yu | Huang, Xu | Liu, Chaoxiang
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7–1.5 μg/L and 1.0–1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6–14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34–45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10⁻²-6.34 × 10⁻¹), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 10⁰) compared to that of the other substrates (1.82 × 10⁰–2.27 × 10⁰), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
Show more [+] Less [-]A two-year field study of using a new material for remediation of cadmium contaminated paddy soil Full text
2020
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Ji, Puhui
Cadmium (Cd) as a highly toxic heavy metal can cause seriously harmful to human health. Rice consumption is a major source of Cd intake by Chinese. Reduce the Cd accumulation by rice is the key for reducing Cd hazard. Therefore, fly ash (FA) was used as raw material in this study, after the process of simplifying hydrothermal synthesis the zeolite (ZE), which was named as low-temperature-alkali roasting, a new intermediate materials (IP) was got. And the three mentioned materials (FA, IP and ZE) were used for a two-year field experiment. The study demonstrated that, application of IP and ZE could promote rice growth, as well as increase soil pH, and improve available Si content. The rice production increased by 36.1% and 29.8% in 2017 by IP and ZE applied, enhanced 35.9% and 31.7% in 2018, respectively. Meanwhile, the bio-available Cd decreased by 26.9% and 26% in 2017, reduced by 22.9% and 28% in 2018, respectively. Generally, the passivators could promote the conversion of acid-exchangeable fraction Cd to reducible fraction Cd. It can be conclude that, IP and ZE have good remediation effect on contaminated soil, and alleviated effects on Cd accumulation by rice, even though no significant difference was detected between IP and ZE. The synthesis process of IP of is simpler than ZE. The impact of IP on contaminated soil needs further exploration.
Show more [+] Less [-]Highly efficient remediation of groundwater co-contaminated with Cr(VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: Process product and interaction mechanism Full text
2020
He, Yinhai | Lin, Hai | Luo, Mingke | Liu, Junfei | Dong, Yingbo | Li, Bing
Hexavalent chromium and nitrate co-contaminated groundwater remediation are attracting extensive attention worldwide. However, the transformation pathways of chromium and nitrate and the interplay mechanism between them remain unclear. In this work, zeolite-supported nanoscale zero-valent iron/palladium (Z-Fe/Pd) was synthesized and used for the first time to simultaneously remediate Cr(VI) and nitrate. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses confirmed that nanoscale zero-valent iron/palladium was successfully loaded onto zeolite and it exhibited good dispersibility and oxidation resistance. Results of batch experiments showed that the Cr(VI) and nitrate removal efficiencies decreased from 95.5% to 91.5% to 45% and 73%, respectively, with the initial solution pH increasing from 3.0 to 8.0. The removal rates and efficiencies of Cr(VI) and nitrate under anoxic conditions were higher than those under open atmosphere because the dissolved oxygen diminished the electron selectivity toward the target pollutants. Moreover, the presence of Cr(VI) inhibited nitrate reduction by forming Fe(III)-Cr(III) hydroxide to impede electron transfer. Cr(VI) removal was promoted by nitrate, within limits, by balancing the consumption and generation rate of Fe₃O₄, which enhanced electron migration from the Fe(0) core to the external surface. The removal capacities of Cr(VI) and nitrate reached 121 and 95.5 mg g⁻¹, respectively, which were superior to the removal capacities of similar materials. Results of product identification, XRD, and XPS analyses of spent Z-Fe/Pd indicated that the reduction of Cr(VI) was accompanied by adsorption and co-precipitation, whereas the reduction of nitrate was catalyzed by the synergism of Fe(0) and Pd(0). An alternative to the simultaneous remediation of Cr(VI) and nitrate from groundwater under anoxic conditions is provided.
Show more [+] Less [-]Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater Full text
2019
Zhao, Min | Wang, Sen | Wang, Hongsheng | Qin, Peirui | Yang, Dongjiang | Sun, Yuanyuan | Kong, Fanlong
Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology, with fillers playing an important role in treatment processes. However, traditional wetland fillers (e.g. zeolite) are known to be imperfect because of their low adsorption capacity. In this paper, the adsorbent sodium titanate nano fillers (T3-F) was synthesized as an alternative to traditional filler with sodium titanate nanofibers (T3) as the raw material, epoxy adhesive as the adhesive agent and NH₄HCO₃ as the pore-making agent. The properties of T3-F were characterized by powder X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), porosity. The effect of different parameters such as pH, co-existing ions, contact time, initial metal ion concentrations and temperature was investigated for heavy metal adsorption. The results showed that the adsorption of heavy metal by T3-F followed the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacities for Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺ were about 1.5–1.98 mmol/g, which were 4–5 times that of zeolite, the traditional commonly used filler. Moreover, T3-F could entrap toxic ions irreversibly and maintain structural stability in the adsorption process, which solved the issue of secondary pollution. In the presence of competing ions, the adsorption efficiency for Pb²⁺ was not reduced significantly. Adsorption was strongest at high pH. From the results and characterization, an adsorption mechanism was suggested. This study lays a foundation for the practical application of T3-F as a constructed wetland filler in the future.
Show more [+] Less [-]Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies Full text
2019
Li, Xiaodi | Xie, Qiang | Chen, Shouhui | Xing, Mingchao | Guan, Tong | Wu, Deyi
Release of phosphorus (P) from sediment to overlying water has to be dealt with to address algal blooms in eutrophic lakes. In this study, the sediment from the Lake Taihu was amended with lanthanum modified zeolite (LMZ) to reduce P release under different pH, temperature and anaerobic conditions. LMZ performed well, to decreasing P concentration in Lake Taihu water in the presence of sediment. The EPC₀ value, the critical P concentration at which there was neither P adsorption nor P release, was lowered by adding LMZ, suggesting that amendment with LMZ could diminish the risk of P release from the sediment. From the Langmuir isotherm model, the adsorption capacity of phosphate by LMZ was estimated to be 64.1 mgP/g. The LMZ-amended sediment had a higher content of stable P forms (HCl-P and Res-P) and a lower content of P forms with a high (NH₄Cl-P and BD-P) or medium-high (NaOH-P and Org-P) risk of release, when compared with the original sediment. The fractionation simulates conditions which release potentially mobile P which can then be simply re-bound to LMZ. At high pH (>9.0), anaerobic condition or high temperature promoted the liberation of P from sediment. However, P release could be greatly inhibited by LMZ. In addition, although Mn²⁺ and NH₄⁺ ions were released from sediment under the anaerobic condition, the release could also be hindered by adding LMZ. LMZ is a promising P inactivation agent to manage eutrophication in the sediment of Lake Taihu.
Show more [+] Less [-]Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure Full text
2017
Zhou, Wenjun | Ren, Lingwei | Zhu, Lizhong
Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd2+) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R2 > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd2+, in particular zeolite, and the percentage decreases for Cd2+ sorption increased with increasing concentrations of Cd2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd2+, however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd2+ sorption. The adsorbed form was found to inhibit Cd2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils.
Show more [+] Less [-]