Refine search
Results 1-10 of 227
The possibility of removing heavy metals from waste waters by natural zeolites
1997
Pasalic, S. | Grbavcic, M. | Barbic, F. | Pljakic, E. (Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd (Yugoslavia))
Over the last several years, the investigations of the natural zeolites application in the sorption processes have been intensified. Purification of waste waters in order to remove lead, cadmium, copper and other heavy metals, is one significant example of such application. In this paper, the investigations results on characteristics of the natural and chemically activated zeolites from the region of Vranje (Serbia, Yugoslavia), are presented. The experiments with zeolites were performed after determination of their physico-chemical characteristics. Adsorptive characteristics were investigated under laboratory conditions, in a liquid medium, depending on granulation and concentration of the heavy metals. As the obtained results show, these natural materials can be used to remove heavy metals from the waste waters.
Show more [+] Less [-]Effects of composite environmental materials on the passivation and biochemical effectiveness of Pb and Cd in soil: Analyses at the ex-planta of the Pak-choi root and leave
2022
Wang, An | Wang, Yao | Zhao, Peng | Huang, Zhanbin
Passivation of soil heavy metals using environmental materials is an important method or important in situ remediation measure. There are more studies on inorganic environmental materials for heavy metal passivation, but not enough studies on organic and their composite environmental materials with inorganic ones. In order to reveal the passivation effect of coal-based ammoniated humic acid (CAHA), biochemical humic acid (BHA), biochar (BC) and other organic types and inorganic environmental materials such as zeolites (ZL) on soil heavy metals and their biological effectiveness. The microstructures of these materials were analyzed by Scanning electron microscope (SEM). The main components of the environmental materials were analyzed by Energy dispersive spectrometer (EDS), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction spectrum (XRD) to elucidate the mechanism of passivation of heavy metals in soil by these environmental materials. The study was conducted to investigate the effects of different types of environmental materials and their combinations on the passivation effect and biological effectiveness of Pb and Cd complex contamination in soil by means of soil incubation and pot experiments using single-factor and multifactor multilevel orthogonal experimental designs. Soil incubation experiments proved that the effective state of soil Pb and Cd in T₇ was reduced by 13.40% and 11.07%, respectively. The extreme difference analysis determined the optimized formulation of soil lead and cadmium passivation as BHA: CAHA: BC: ZL = 3.5:5:20:10. The pot experiment proved that the application of composite environmental materials led to the reduction of lead and cadmium content and increase of biomass of Pak-choi, and the optimal dosage of optimized composite environmental materials was 23.1 g/kg.
Show more [+] Less [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
Show more [+] Less [-]Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb
2021
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Li, Xiuying | Ji, Puhui
Cadmium (Cd) and lead (Pb) are toxic heavy metals that impact human health and biodiversity. Removal of Cd/Pb from contaminated soils is a means for maintaining environmental sustainability and biodiversity. In this study, we applied a newly modified material fly ash (NA), zeolite (ZE), and fly ash (FA) to the paddy soils and evaluated the effects of Cd/Pb accumulation in rice via a one-year field experiment. The results showed that the application of NA and ZE enhanced the soil pH and nutrients to a large extent and reduced the availability of Cd/Pb in soil. The Cd and Pb concentrations in rice grains decreased by 32.8% and 62.9%, respectively, with the NA treatments. Similarly, the application of ZE reduced the Cd and Pb concentrations in rice grains by a factor of 27.9% and 63.5%, respectively, which indicates that the amendments can promote the transfer of Cd and Pb from acid-exchangeable fraction to oxidizable and residual fractions. The Cd/Pb showed a significant positive correlation to other metal ions and a negative correlation to the nutrients. Generally, the application of NA and ZE was effective in reducing Cd/Pb accumulation and improving rice yield. Moreover, the NA was more cost-effective than ZE. Hence, this study proves that NA may be a better amendment for remediation of Cd/Pb contaminated soils.
Show more [+] Less [-]Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting
2021
Li, Houfu | Abbas, Touqeer | Cai, Mei | Zhang, Qichun | Wang, Jingwen | Li, Yong | Di, Hongjie | Ṭāhir, Muḥammad
Cadmium (Cd) is the most concerning soil pollutant, and a threat to human health, especially in China. The in-situ immobilization of Cadmium by amendments is one of the most widely adopted methods to remedy soil contamination. The study was designed to evaluate the effect of organo-chemical amendments on soil Cd bioavailability and nitrogen cycling microbes under continuous planting of rice (Oryza sativa) and pak choi (Brassica chinensis L.). The experiment was carried out using four amendments, Lime, Zeolite, Superphosphate, and Biochar, at two different ratios; M1: at the ratio of 47:47:5:1, and M2 at the ratio of 71:23:5:1, respectively. Moreover, both M1 and M2 were enriched at four levels (T1: 0.5%; T2: 1%; T3: 2%; T4: 4%). Results showed that compared with CK (Cd enriched soils), the yield of rice under treatments of M1T1 and M2T1 increased by 8.93% and 8.36%, respectively. While the biomass (fresh weight) of pak choi under M1 and M2 amendments increased by 2.52–2.98 times and 0.76–2.89 times respectively, under enrichment treatments T1, T2, and T3. The total Cd concentrations in rice grains treated with M1T3 and M2T3 decreased by 89.25% and 93.16%, respectively, compared with CK. On the other hand, the total Cd concentrations in pak choi under M1T3 and M2T2 decreased by 92.86% and 90.23%, respectively. The results showed that soil pH was the main factor affecting Cd bioavailability in rice and pak choi. The Variance partitioning analysis (VPA) of rice and pak choi showed that soil pH was the most significant contributing factor. In the rice season, the contribution of soil pH (P) on Cd bioavailability was 10.14% (P = 0.102), and in the pak choi season, the contribution of soil pH was 8.38% (P = 0.133). Furthermore, the abundance of ammonia oxidation and denitrifying microorganisms had significantly correlation with soil pH and exchange Cd. In rice season, when the enrichment level of amendments increased from 0.5% (T1) to 2% (T3), the gene abundance of AOA, AOB, nirK, nirS and nosZ (І) tended to decrease. While in pak choi season, when the enrichment level increased at the level of 0.5% (T1), 1% (T2), and 2% (T3), the gene abundance of AOB, nirS, and nosZ (І) increased. Additionally, the gene abundance of AOA and nirK showed a reduction in the pak choi season contrasting to rice. And the mixed amendment M2 performed better at reducing Cd uptake than M1, which may have correlation with the ratio of lime and zeolite in them. Finally, we conclude that between these two amendments, when applied at a moderate level M2 type performed better than M1 in reducing Cd uptake, and also showed positive effects on both gene abundance and increase soil pH.
Show more [+] Less [-]Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications
2020
Latif, Abdul | Sheng, Di | Sun, Kai | Si, Youbin | Azeem, Muhammad | Abbas, Aown | Vēlāyutan̲, T. A.
Environmental pollution by heavy metals (HMs) has raised considerable attention due to their toxic impacts on plants, animals and human beings. Thus, the environmental cleanup of these toxic (HMs) is extremely urgent both from the environmental and biological point of view. To remediate HMs-polluted environment, several nanoparticles (NPs) such as metals and its oxides, carbon materials, zeolites, and bimetallic NPs have been documented. Among these, Fe-based NPs have emerged as an effective choice for remediating environmental contamination, due to infinite size, high reactivity, and adsorption properties. This review summarizes the utilization of various Fe-based NPs such as nano zero-valent iron (NZVI), modified-NZVI, supported-NZVI, doped-NZVI, and Fe oxides and hydroxides in remediating the HMs-polluted environment. It presents a comprehensive elaboration on the possible reaction mechanisms between the Fe-based NPs and heavy metals, including adsorption, oxidation/reduction, and precipitation. Subsequently, the environmental factors (e.g., pH, organic matter, and redox) affecting the reactivity of the Fe-based NPs with heavy metals are also highlighted in the current study. Research shows that Fe-based NPs can be toxic to living organisms. In this context, this review points out the environmental hazards associated with the application of Fe-based NPs and proposes future recommendations for the utilization of these NPs.
Show more [+] Less [-]A two-year field study of using a new material for remediation of cadmium contaminated paddy soil
2020
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Ji, Puhui
Cadmium (Cd) as a highly toxic heavy metal can cause seriously harmful to human health. Rice consumption is a major source of Cd intake by Chinese. Reduce the Cd accumulation by rice is the key for reducing Cd hazard. Therefore, fly ash (FA) was used as raw material in this study, after the process of simplifying hydrothermal synthesis the zeolite (ZE), which was named as low-temperature-alkali roasting, a new intermediate materials (IP) was got. And the three mentioned materials (FA, IP and ZE) were used for a two-year field experiment. The study demonstrated that, application of IP and ZE could promote rice growth, as well as increase soil pH, and improve available Si content. The rice production increased by 36.1% and 29.8% in 2017 by IP and ZE applied, enhanced 35.9% and 31.7% in 2018, respectively. Meanwhile, the bio-available Cd decreased by 26.9% and 26% in 2017, reduced by 22.9% and 28% in 2018, respectively. Generally, the passivators could promote the conversion of acid-exchangeable fraction Cd to reducible fraction Cd. It can be conclude that, IP and ZE have good remediation effect on contaminated soil, and alleviated effects on Cd accumulation by rice, even though no significant difference was detected between IP and ZE. The synthesis process of IP of is simpler than ZE. The impact of IP on contaminated soil needs further exploration.
Show more [+] Less [-]Highly efficient remediation of groundwater co-contaminated with Cr(VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: Process product and interaction mechanism
2020
He, Yinhai | Lin, Hai | Luo, Mingke | Liu, Junfei | Dong, Yingbo | Li, Bing
Hexavalent chromium and nitrate co-contaminated groundwater remediation are attracting extensive attention worldwide. However, the transformation pathways of chromium and nitrate and the interplay mechanism between them remain unclear. In this work, zeolite-supported nanoscale zero-valent iron/palladium (Z-Fe/Pd) was synthesized and used for the first time to simultaneously remediate Cr(VI) and nitrate. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses confirmed that nanoscale zero-valent iron/palladium was successfully loaded onto zeolite and it exhibited good dispersibility and oxidation resistance. Results of batch experiments showed that the Cr(VI) and nitrate removal efficiencies decreased from 95.5% to 91.5% to 45% and 73%, respectively, with the initial solution pH increasing from 3.0 to 8.0. The removal rates and efficiencies of Cr(VI) and nitrate under anoxic conditions were higher than those under open atmosphere because the dissolved oxygen diminished the electron selectivity toward the target pollutants. Moreover, the presence of Cr(VI) inhibited nitrate reduction by forming Fe(III)-Cr(III) hydroxide to impede electron transfer. Cr(VI) removal was promoted by nitrate, within limits, by balancing the consumption and generation rate of Fe₃O₄, which enhanced electron migration from the Fe(0) core to the external surface. The removal capacities of Cr(VI) and nitrate reached 121 and 95.5 mg g⁻¹, respectively, which were superior to the removal capacities of similar materials. Results of product identification, XRD, and XPS analyses of spent Z-Fe/Pd indicated that the reduction of Cr(VI) was accompanied by adsorption and co-precipitation, whereas the reduction of nitrate was catalyzed by the synergism of Fe(0) and Pd(0). An alternative to the simultaneous remediation of Cr(VI) and nitrate from groundwater under anoxic conditions is provided.
Show more [+] Less [-]Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies
2019
Li, Xiaodi | Xie, Qiang | Chen, Shouhui | Xing, Mingchao | Guan, Tong | Wu, Deyi
Release of phosphorus (P) from sediment to overlying water has to be dealt with to address algal blooms in eutrophic lakes. In this study, the sediment from the Lake Taihu was amended with lanthanum modified zeolite (LMZ) to reduce P release under different pH, temperature and anaerobic conditions. LMZ performed well, to decreasing P concentration in Lake Taihu water in the presence of sediment. The EPC₀ value, the critical P concentration at which there was neither P adsorption nor P release, was lowered by adding LMZ, suggesting that amendment with LMZ could diminish the risk of P release from the sediment. From the Langmuir isotherm model, the adsorption capacity of phosphate by LMZ was estimated to be 64.1 mgP/g. The LMZ-amended sediment had a higher content of stable P forms (HCl-P and Res-P) and a lower content of P forms with a high (NH₄Cl-P and BD-P) or medium-high (NaOH-P and Org-P) risk of release, when compared with the original sediment. The fractionation simulates conditions which release potentially mobile P which can then be simply re-bound to LMZ. At high pH (>9.0), anaerobic condition or high temperature promoted the liberation of P from sediment. However, P release could be greatly inhibited by LMZ. In addition, although Mn²⁺ and NH₄⁺ ions were released from sediment under the anaerobic condition, the release could also be hindered by adding LMZ. LMZ is a promising P inactivation agent to manage eutrophication in the sediment of Lake Taihu.
Show more [+] Less [-]Trace elements in hazardous mineral fibres
2016
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed.The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Show more [+] Less [-]