Refine search
Results 101-110 of 168
Mercury Concentrations in Lake Sediments - Revisiting the Predictive Power of Catchment Morphometry and Organic Matter Composition
2006
Kainz, M. | Lucotte, M.
Lake sediments are a potential source of mercury (Hg) for aquatic biota. Here, we investigated the predictive power of (a) key parameters for lake catchment morphometry and (b) organic matter composition of sediments in an effort to account for observed variations of total (THg) and methyl (MeHg) mercury concentrations in lake sediments. Using regression models we demonstrate that the morphometric parameters lake depth as well as inclination of catchment soils and lake bottoms can significantly predict variations of THg concentrations, but not MeHg, at profundal lake sediments. Although THg and MeHg concentrations in sediments could not be predicted by specific organic matter sources, as elucidated by atomic C/N ratios, our data suggest that wetland-derived total organic carbon (TOC) contained less THg concentrations than TOC derived from mostly forested watersheds. However, TOC concentrations could significantly predict MeHg concentrations and the proportion of methylated Hg at all sediment stations. Finally, from an ecotoxicological point of view, we propose that concentrations of TOC at surface lake sediments, rather than parameters of catchment morphometry, may predict dietary sources of MeHg for benthic consumers and consequently perhaps for organisms at higher trophic levels.
Show more [+] Less [-]Organoclays for Aquifer Bioremediation: Adsorption of Chlorobenzene on Organoclays and its Degradation by RHODOCOCCUS B528
2006
Witthuhn, Barbara | Klauth, Peter | Pernyeszi, Timea | Vereecken, H (Harry) | Klumpp, Erwin
The adsorption and degradation of chlorobenzene on partially modified organoclays and by the autochthonous microorganism Rhodococcus B528 were studied by means of the batch technique. Organoclays were prepared from Na-montmorillonite (MM) by using dodecyltrimethylammonium (C₁₂) and dioctadecyldimethylammonium (2C₁₈) bromides. The degree of modification was 35 (2C₁₈-35-MM) and 89% (C₁₂-89-MM) of the cation exchange capacity of MM. The adsorption experiments were carried out using headspace GC. The intercalation of chlorobenzene into the interlayers of organo-MM was detected by X-ray diffraction. The adsorption isotherms found were of the S1 type indicating a cooperative effect. Chlorobenzene showed a higher affinity for 2C₁₈-35-MM than C₁₂-89-MM, which could not only be explained by the organic carbon content. The comparison with 2,4-dichlorophenol adsorption has implied that for the studied systems the different adsorption mechanisms are primarily governed by the different molecular properties and not by the type of absorbent. The presence of 2C₁₈-35-MM caused no negative effect on the investigated microorganisms and complete biodegradation of chlorobenzene was achieved without desorption limitation for growth, demonstrating the applicability of partially modified organoclays for bioremediation.
Show more [+] Less [-]Performance of Trickle-Bed Air Biofilter: A Comparative Study of a Hydrophilic and a Hydrophobic Voc
2006
Cai, Z | Kim D. | Sorial, G. A
Two lab-scale trickle-bed air biofilters were operated for investigating the difference in performance between a hydrophilic and a hydrophobic volatile organic compound (VOC). Methyl isobutyl ketone (MIBK) and styrene were selected as a model hydrophilic and hydrophobic VOCs, respectively. Effects of loading rates, biofilter re-acclimation, removal profile along biofilter depth, nitrogen consumption, and CO₂ production were compared under three operating conditions, namely, backwashing and two non-use periods (starvation and stagnant). Consistent over 99% removal efficiency up to loading rates of 3.26 kg COD/m³-day was obtained for the MIBK biofilter at 0.76 min empty bed retention time (EBRT) and 1.5 L/d nutrient flow. A similar performance for the styrene biofilter was obtained for loading rates up to 1.9kg COD/m³-day at 2.02 min EBRT and 2.4 L/d nutrient flow. The MIBK biofilter required only an initial acclimation period of 16 days while styrene biofilter required 46 days. Non-use periods can be used as another means of biomass control for both biofilters when the employed loading rate did not exceed 1.27 and 2.17 kg COD/m³-day for styrene and MIBK biofilters, respectively. The re-acclimation of both biofilter was delayed with increase of loading rate. MIBK biofilter re-acclimated in 90 min, while styrene biofilter re-acclimated in more than 600 min. Under similar loading rates, MIBK biofilter utilized less biofilter depth than styrene biofilter. Nitrogen consumption behaviors were apparently different between the two biofilters. Styrene biofilter had higher CO₂ production than MIBK biofilter and its CO₂ production was closely related to the theoretical complete chemical oxidation.
Show more [+] Less [-]Sediment-Water Interactions in an Eroded and Heavy Metal Contaminated Peatland Catchment, Southern Pennines, UK
2006
Rothwell, J. J | Evans, M. G | Allott, T. E. H
Atmospherically deposited lead in the upper layer of the heavily eroded peatlands of the Peak District, southern Pennines, UK, reaches concentrations in excess of 1,000 mg kg-¹. Erosion of the upper peat layer in this region is releasing lead, associated with eroded peat particles, into the fluvial system. Understanding the process mechanisms that control dissolved lead concentrations in contaminated peatland streams is vital for understanding lead cycling and transport in peatland streams. Many headwater streams of the southern Pennines recharge drinking water reservoirs. Measurements in the Upper North Grain (UNG) study catchment show that mean sediment-associated and dissolved lead concentrations are 102 ± 39.4 mg kg-¹ and 5.73 ± 2.16 μg l-¹, respectively. Experimental evidence demonstrates that lead can desorb from suspended sediments, composed of contaminated peat, into stream waters. In-stream processing could therefore account for the elevated dissolved lead concentrations in the fluvial system of UNG.
Show more [+] Less [-]The Influence of Chironomus plumosus Larvae on Nutrient Fluxes and Phosphorus Fractions in Aluminum Treated Lake Sediment
2006
Andersen, Frede Ø | Jorgensen, Michael | Jensen, Henning S
One of the methods to diminish the internal phosphorus (P) loading is inactivation of P by aluminum (Al). After addition of Al to lake water an Al(OH)₃ floc is formed, which settles to the bottom and initially form a lid on the sediment surface. The effects of Chironomus plumosus larvae on sediment nutrient fluxes and P binding-sites in the sediment after addition of Al were tested. C. plumosus larvae were added to sediment cores in which sediment-water fluxes of nutrients were measured four times. After one month, the sediment was sectioned with depth and P fractions were measured by sequential chemical extraction. The chironomids created burrows through the Al layer which caused a significantly increased efflux of P from the Al treated sediment, because the P had only limited contact to the added Al. The chironomids also affected the P fractions in the sediment by their bioturbating activity. Thus, they caused increased Al concentrations in the upper part of the Al treated sediment. This created an enhanced contact between Al and P in the upper 7 cm of the sediment and, as a result, an increased binding of P to Al and a lowered porewater P. The DIP efflux is therefore expected to be lowered after the initial phase. Al had no effects on the nitrogen fluxes, but the chironomids enhanced the [graphic removed] release, and decreased the [graphic removed] release or increased the [graphic removed] uptake by the sediments.
Show more [+] Less [-]Half a Century of Mercury Contamination in Lake Vänern (Sweden)
2006
Wihlborg, P. | Danielsson, A.
Lake Vänern is Sweden's largest freshwater reservoir. It has been significantly affected by mercury contamination during the latter half of the 20th century. The aim of this study was to analyse the spatial and vertical mercury distribution, whereas 46 sediment cores were sampled in 2001 and analysed for total mercury. Several of these cores were dated presenting sediment accumulation rates varying from 6-8 mm yr-¹ outside major rivers to ~2 mm yr-¹ in the deeper areas. This was made using ¹³⁷ Cs, which was verified by ²¹⁰ Pb dating. Cluster analysis was used to identify five areas with similar accumulation and mercury concentration regimes. In areas far from shore, surface concentrations ranged from 0.1 to 0.5 ppm Hg, while the deeper layers in contaminated areas held concentrations up to 11 ppm Hg. In total, ~50 tonnes of mercury accumulated in the lake's sediment between ~1940-2001; almost 80% (or 37 tonnes) originate from before the mid 70's when the recovery period began, and at least 30 tonnes can be attributed to the former point source - a chlor-alkali industry.
Show more [+] Less [-]Comparison of Soil Extraction Isotherms of Soil Samples Saturated With Nonpolar Liquids
2006
Makó, András | Elek, Barbara
In multiphase systems capillary pressures play a significant role on fluid movement and retention. The facility to predict the effect of different thermal remediation strategies requires the knowledge of the effect of temperature on capillary pressure-saturation relationships in the soils. The objective of recent study was (a) to develop a technique for routinely measuring the pressure-saturation curves of soil samples saturated with a nonpolar liquid at different regulated temperatures (b) to build a database using the measured pressure-saturation curves and the physical, chemical properties of the model soils (c) to establish the dependence of nonaqueous phase liquid retention on the soil properties and the temperature. The retention curves (extraction isotherms) with nonaqueous phase liquid were determined using a modified pressure plate extractor. The wetting phase was a non-aromatic hydrocarbon distillation product. Pressure plates were designed and constructed in the laboratory of our department. The temperature was held constant at 20, 40 and 60 [composite function (small circle)]C. Statistical analysis was performed involving selected soil parameters and the measured nonaqueous phase liquid retention data. The results show that knowing some easily measurable soil parameters (bulk density, particle size distribution, humus and lime content) we can estimate the nonaqueous phase liquid retention of the soils. The measured “extraction isotherms” provide essential information about the temperature-dependency of pressure-saturation curves.
Show more [+] Less [-]Rapid Determination of Mercury in Plant and Soil Samples Using Inductively Coupled Plasma Atomic Emission Spectroscopy, a Comparative Study
2006
Han, F.X. | Patterson, W.D. | Xia, Y. | Sridhar, B.B.M. | Su, Y.
The objectives of this study were to simplify sample preparation and validate mercury detection in soil and plant samples using inductively coupled plasma atomic emission spectroscopy (ICP-AES). A set of mercury contaminated and mercury free soil and plant samples were digested and analyzed by ICP-AES, inductively coupled plasma mass spectrometry (ICP-MS), and cold vapor atomic absorption spectroscopy (CVAAS). Results show that mercury measurements in soil and plant samples using ICP-AES were in agreement with those analyzed using ICP-MS and CVAAS. The concentrations of mercury in soils and plant tissues determined by ICP-AES were 92.2% and 90.5% of those determined by CVAAS and ICP-MS, respectively. Digestion of soil samples with 4 M HNO₃ and direct measurement by ICP-AES without reduction of Hg²⁺ to Hg⁰ gave a reasonable and acceptable recovery (92%) for determining Hg in soils. We conclude that ICP-AES with optimized conditions (addition of gold chloride, extension of washing time, linear working range, and selection of wavelength - 194 nm) resulted in reliable detection of mercury in environmental samples.
Show more [+] Less [-]Using Lidar to Measure Perfluorocarbon Tracers for the Verification and Monitoring of Cap and Cover Systems
2006
Heiser, J.H. | Sedlacek, A.J.
Waste site cover systems used to prevent rainfall from reaching the waste need to remain intact throughout the lifetime of the waste site. Monitoring of these covers is needed to ascertain the performance and to determine if any degradation has occurred. Researchers at Brookhaven National Laboratory have used gaseous perfluorocarbon tracers (PFTs) to monitor the integrity of caps and covers for waste disposal sites. Detection of the PFTs currently uses gas chromatography techniques developed at BNL. This paper presents a potential approach to this wide-area screening problem by replacing conventional gas chromatography analysis with laser-based, lidar (Light Detection and Ranging) detection of the PFTs. Lidar can be used to scan the surface of the cover system, looking for fugitive PFTs. If successful this would enable the departure from soil gas analysis and instead look for PFTs in the air just above the soil surface. The advantages of using a lidar platform are multi-fold and include the elimination of soil monitoring ports. Benchtop and pilot-scale indoor experiments using an a continuous wave, line-tunable infrared CO₂ laser were used to detect PMCH (perfluoromethylcyclohexane, one of a group of PFTs used at BNL). Laboratory measurements of the absorption cross-section were the same order of magnitude compared to literature values for similar perfluorocarbon compounds. Initial benchtop, fixed cell length experiments were successful in detecting PMCH to levels of 10 ppb-m. To improve the lower limit of detection, a HgCdTe detector was purchased that was more specific to the lasing region of interest and hence had a higher sensitivity at this spectral region Using a pilot-scale lidar system in a 40m indoor hallway air concentrations of PMCH were then measured down to 1 ppb-m. These results are very promising and show great potential for monitoring the integrity of cover systems using lidar and PFTs.
Show more [+] Less [-]Microbially Mediated Redox Cycling at the Oxic-Anoxic Boundary in Sediments: Comparison of Animal and Plants Habitats
2006
Hines, Mark E
Microorganisms are responsible for the bulk of transformations that occur in surficial sediments. They are most active at redox boundaries where they can benefit from access to various oxidants and reductants generated during redox cycling events. To illustrate the dynamics of microbially mediated processes, especially those involving sulfur and metal cycles, processes were compared in habitats either bioturbated by a capitellid worm or inhabited by a salt marsh grass. The presence of macrofauna and macroflora greatly altered the three-dimensional array of redox gradients in sediments, but the type and form of reductants and oxidants provided varied greatly; clastic sedimentary infauna subducted solid phase organic material and iron oxides, whereas plant roots released dissolved organic matter and oxygen. These differences resulted in a bioturbated system that exhibited a rapid sulfur cycle (residence time of minutes), but a slower iron cycle (days), whereas vegetation caused a slow sulfur cycle and rapid iron cycle. Alteration of sediments by higher life forms also greatly affected the composition and relative abundances of sedimentary bacteria, even on short time scales. Although redox cycling at interfaces can be somewhat predictable, variations in response to biological and physical perturbations demonstrated wide differences in the dynamics of redox-mediated processes.
Show more [+] Less [-]