Refine search
Results 1021-1030 of 6,535
Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment
2020
Chinese dark tea is widely enjoyed for its multiple health-promoting effects and pleasant taste. However, its production involves fermentation by microbiota in raw tea, some of which are filamentous fungi and thus potential mycotoxin producers. Accordingly, whether mycotoxins pose health risk on dark tea consumption has become a public concern. In this study, a cleaning method of multi-functional column (MFC) and immunoaffinity column (IAC) in tandem combined to HPLC detection was developed and validated for determining ten mycotoxins of six groups (i.e., aflatoxins of B₁, B₂, G₁ and G₂, ochratoxin A, zearalenone, deoxynivalenol, fumonisins of B₁, B₂, and T-2) in dark teas. The interferences from secondary metabolites were effectively reduced, and the sensitivities and recoveries of the method were qualified for tea matrices. Six groups mycotoxins were determined in 108 samples representing the major Chinese dark teas by using the new method. Subsequently, the dietary exposure and health risks were evaluated for different age and gender groups in Kunming and Pu’er in China and Ulan Bator in Mongolia. The occurrence of zearalenone was 4.63% and that of ochratoxin A was 1.85%, with the other four groups mycotoxins were below the limits of quantification. The hazard index values for the five groups’ non-carcinogenic mycotoxins were far below 1.0. The deterministic risk assessment indicated no non-carcinogenic risks for dark tea consumption in the three areas. Probabilistic estimation showed that the maximum value of 95th percentile carcinogenic risk value for the aflatoxins was 2.12 × 10⁻⁸, which is far below the acceptable carcinogenic risk level (10⁻⁶). Hereby, six groups mycotoxins in Chinese dark tea showed no observed risk concern to consumers.
Show more [+] Less [-]Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China
2020
Fourteen perfluoroalkyl substances (PFASs) in fishery organism, surface seawater, river water, rainwater, and wastewater samples collected from Jiaozhou Bay (JZB) in China and its surrounding area were determined to understand their contamination status, sources, health risk, and causes of spatiotemporal variations in the aquatic environment of a temperate bay adjacent to a metropolis. The total concentration of PFASs in 14 species of fishery organisms ranged from 1.77 ng/g to 31.09 ng/g wet weight, and perfluorooctane sulfonate (PFOS) was the dominant PFAS. ∑PFASs concentration in surface seawater ranged from 5.54 ng/L to 48.27 ng/L over four seasons, and dry season (winter and spring) had higher levels than wet season (summer and autumn). Perfluorooctanoic acid (PFOA) was the predominant individual PFAS in seawater, indicating that notorious C8 homologs remained the major PFASs in this region. The seasonal variation in seawater concentrations of three major PFASs, namely, PFOA, perfluoroheptanoic acid, and perfluorononanoic acid, was similar to that of ∑PFASs. However, the seasonal variation of PFOS concentration was different from that of ∑PFASs, with the lowest in winter and the highest in spring. In general, seasonal variations of terrigenous input and water exchange capacity were the main reasons for the spatiotemporal variation of PFASs in the aquatic environment of JZB. Moreover, bioselective enrichment for individual PFAS affected the partition of PFASs in different environment medium. Wet precipitation, sewage discharge, and surface runoff were the main sources of PFASs in this area. Nevertheless, the contribution of different sources to individual PFAS indicated a clear difference, and wastewater and river water were not consistently the most important source for every PFAS. Preliminary risk assessment revealed that the consumption of seafood, especially fish, from JZB might pose a certain extent of health risk to local consumers based on their estimated daily intake of PFASs.
Show more [+] Less [-]Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China
2020
This study investigated the occurrence and distribution of pesticides in surface water (lakes, major rivers and tributaries) and potential discharge sources (fish ponds, livestock and poultry farms, and sewage treatment plants) in Wujin District (northwest of Taihu Lake), Jiangsu province, China. An analytical liquid chromatography-tandem mass spectrometry method was developed for 38 pesticides, which was applied in the monitoring of 240 surface water samples and 76 potential discharge source samples. Eleven insecticides and five fungicides with temporal and spatial variation were detected in surface water. The total pesticide concentrations in surface water in different seasons were as follows: March > August > June > November. The two most polluting and widespread pesticides were carbendazim (maximum concentration 508 ng L⁻¹, detection rate 100%) and imidacloprid (maximum concentration 438 ng L⁻¹, detection rate 88%). Gehu Lake (S46) and Sanshangang River (S12) were seriously polluted water bodies. Seven insecticides and four fungicides were detected in the potential discharge sources; and their composition changed significantly with the seasons. The concentrations of detected organophosphorus pesticides and neonicotinoids (e.g. acetamiprid in March and dichlorvos in November) in a few non-agricultural planting sources were far greater than those detected in surface water, and hence a few fish ponds, livestock and poultry farms, and sewage treatment plants might be the potential discharge sources of pesticides in the surrounding surface water. The estimated input flux of the studied pesticides from upstream rivers to Taihu Lake was 141.95 kg a⁻¹. Furthermore, more attention should be paid to the medium or high aquatic ecotoxicological risk presented by the levels of organophosphorus pesticides, carbamates, and benzimidazoles.
Show more [+] Less [-]Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai rivers in northern China
2020
Like their parent polycyclic aromatic hydrocarbons (PAHs), substituted polycyclic aromatic hydrocarbons (SPAHs), including methyl PAHs (MPAHs), oxygenated PAHs (OPAHs), and chlorinated PAHs (ClPAHs), exist ubiquitously in urban and agricultural rivers. Although laboratory studies have found the biological toxicities of certain SPAHs to be higher than that of their parent PAHs, the ecological risk of SPAHs in rivers has been largely ignored. Here, we studied the distribution, source and transport of PAHs and SPAHs as well as ecological risks in the Chaobai River System, which experiences a high level of anthropogenic activity. The results show that the concentration of ΣOPAHs (321 ± 651 ng/L) was higher than that of ΣPAHs (158 ± 105 ng/L), ΣMPAHs (28 ± 22 ng/L), and ΣClPAHs (30 ± 12 ng/L). We also found that (S)PAHs in Chaobai River mainly originated from Beiyun River (53%–65%), which receives considerable municipal wastewater treatment plant effluent from Beijing. The major transport pathway of (S)PAHs from Chaobai River was likely for irrigation (83%–86%) and transportation into Yongdingxin River (13%–16%), which finally merged into the Bohai Sea. The mixed chronic risk of (S)PAHs (risk quotient = 45 ± 53) was higher than the mixed acute risk (risk quotient = 1.9 ± 1.4), with all sites facing chronic risk and 90% of sites experiencing acute risk. Although the chronic and acute risks of (S)PAHs to plants, invertebrates, and vertebrates were mainly from PAHs (97.5% to chronic risk and 96.5% to acute), SPAHs still posed a chronic risk to invertebrates and vertebrates (risk quotient > 1). Accordingly, the ecological risk of (S)PAHs in Chaobai River should be taken into consideration for ecosystem protection. The transmission of PAHs and SPAHs from Chaobai River may also pose potential risks to farmland through irrigation, as well as to the Bohai Sea via river water discharge.
Show more [+] Less [-]Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage
2020
Novel brominated flame retardants (NBFRs) are now ubiquitous in the environment with the extensive production and application. In the present study, pentabromotoluene (PBT), hexabromobenzene (HBB) and decabromodiphenyl ethane (DBDPE) were spiked into the sediments where mudsnails (Bellamya aeruginosa) were cultivated. In the 35-day enrichment process, the highest concentration of the three NBFRs measured in mudsnail is 2.0 mg/kg, 22 mg/kg and 5.2 mg/kg dry weight (dw), respectively. The average enrichment of NBFRs in viscera was about 3 times of pleopod with the same mass. Meanwhile, the parent mudsnails can transfer NBFRs to their offspring. The removal half-life of the three NBFRs was in the range of 2.6 and 5.7 days according to the first-order kinetic equation. Several degradation products of the NBFRs were detected in mudsnail samples, which were exposed to single substance. 2,4,6-tribromotoluene was identified as degradation product of PBT; 1,2,4,5-tetrabromobenzene and 1,2,4-tribromobenzene were identified as debromination products of HBB. Possible degradation pathways were further proposed. Additionally, mudsnails after exposed to 50 mg/kg of NBFRs were observed under a scanning electron microscope, indicating that shrinkage, tissue hyperplasia and perforation occurred on the visceral surface. Such damage might be related to the accumulation of more pollutants in mudsnails viscera. As one of the few studies to explore the biological process of NBFRs, our observation could provide a scientific basis for evaluating the environmental risks of NBFRs to benthic organisms.
Show more [+] Less [-]Plutonium isotopes in Northern Xinjiang, China: Level, distribution, sources and their contributions
2020
Plutonium in the environment has drawn significant attentions due to its radiotoxicity in high concentration and source term linked with nuclear accidents and contaminations. The isotopic ratio of plutonium is source dependent and can be used as a fingerprint to discriminate the sources of radioactive contaminant. ²³⁹Pu, ²⁴⁰Pu and ¹³⁷Cs in surface soil and soil cores collected from Northern Xinjiang were determined in this work. The concentrations of ²³⁹,²⁴⁰Pu and ¹³⁷Cs are in the range of 0.06–1.20 Bq kg⁻¹, and <1.0–31.4 Bq kg⁻¹ (decay corrected to Sep. 2017), respectively, falling in the ranges of global fallout in this latitude zone. The ²⁴⁰Pu/²³⁹Pu atomic ratios of 0.118–0.209 and ²³⁹,²⁴⁰Pu/¹³⁷Cs activity ratios of 0.039–0.215 were measured. Among the investigated sites, distinctly lower ²⁴⁰Pu/²³⁹Pu atomic ratios of 0.118–0.133 and higher ²³⁹,²⁴⁰Pu/¹³⁷Cs activity ratios of 0.065–0.215 compared to the global fallout values were observed in the northwest part, indicating a significant contribution from other source besides the global fallout. This extra source is mainly attributed to the releases of atmospheric nuclear weapons testing at Semipalatinsk Nuclear Test Site, which was transported by the west and northwest wind through the river valley among mountains in this region. This contribution is estimated to account for 28–43% of the global fallout in the northwest part of Northern Xinjiang. The contribution from the Chinese atmospheric nuclear weapons testing to this region is negligible due to the lack of appropriate wind direction to transport the radioactive releases to this region.
Show more [+] Less [-]Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China
2020
Li, Zijun | Yang, Qingchun | Yang, Yueso | Xie, Chuan | Ma, Honhyun
The contamination of ground water with arsenic is a great public health concern. This paper discusses the possible formation mechanism of high As groundwater; identify the main influences of natural and anthropogenic factors on As occurrence in groundwater; and finally estimates As-induced potential health hazards in an intensive agricultural region, Datong Basin (Northern China). Our findings indicate that the predominant controlling factors of As in groundwater can be divided into natural factors and anthropogenic activities. Natural factors can be classified as natural potential source of As, environmental geological characteristics and hydrochemical conditions; anthropogenic activities are manifested in industrial coal mining, domestic coal burning, agricultural irrigation return flow and excessive application of fertilizers, and groundwater exploitation. Microbial and/or chemical reduction desorption of arsenate from Fe-oxide/hydroxide and/or clay minerals, As-bearing Fe-oxide/hydroxide reduction coupled with sulfate reduction, and competition with phosphorus are postulated to be the major process dominating As enrichment in the alkaline and anoxic groundwater. In addition, age-dependent human health risk assessment (HHRS) was performed, and high risk values reveal a high toxic and carcinogenic risk of As contaminate for population who is subject to the continuous and chronic exposure to elevated As.
Show more [+] Less [-]Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake
2020
Yuan, Hezhong | Tai, Ziqiu | Li, Qiang | Zhang, Fengmin
High phosphorus (P) load and consequent algal bloom are critical issues because of their harmful effects to aquatic ecosystems. The organic phosphorus (Po) cycling and hydrolyzation pathway in the sediments of a hypereutrophic lake area with high algae biomass were investigated using stable isotopes (δ¹³C and δ¹⁵N) along with C/N ratios, a sequential extraction procedure, ³¹P NMR spectrum, and alkaline phosphatase activity (APA) was measured simultaneously. C/N ratios lower than 10 combined with lighter δ¹³C (−23.5 to −25.2‰) and δ¹⁵N values (3.7–9.5‰) indicated that endogenous algal debris contributed to the predominant proportions of P-containing organic matter in the sediments. Sequential extraction results showed that Po fractions decreased as nonlabile Po > moderately labile Po > biomass-Po. Decreasing humic-associated Po (HA-Po) in sediments downward suggested the degradation of high-molecular-weight Po compounds on the geological time scale to low-molecular-weight Po including fulvic-associated Po (FA-Po), which is an important source of labile Po in the sediment. An analysis of the solution ³¹P NMR spectrum analysis showed that important Po compound groups decreased in the order of orthophosphate monoesters > DNA-Po > phospholipids. The significant correlation indicated that orthophosphate monoesters were the predominant components of HA-Po. Rapid hydrolysis of labile orthophosphate diesters further facilitated the accumulation of orthophosphate monoesters in the sediments. Additionally, the simultaneously upward increasing trend demonstrated that APA accelerated the mineralization of Po into dissolved reactive phosphorus (DRP), which might feed back to eutrophication in algae-dominant lakes. The significantly low half-life time (T₁/₂) for important Po compound groups indicated faster metabolism processes, including hydrolysis and mineralization, in hypereutrophic lakes with high algae biomass. These findings provided improved insights for better understanding of the origin and cycling processes as well as management of Po in hypereutrophic lakes.
Show more [+] Less [-]Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting
2020
Wang, Alana O. | Ptacek, Carol J. | Paktunc, Dogan | Mack, E Erin | Blowes, David W.
This study evaluated three biochars derived from bioenergy by-products — manure-based anaerobic digestate (DIG), distillers’ grains (DIS), and a mixture thereof (75G25S) — as amendments to stabilize Hg in contaminated floodplain soil under long-term saturated (up to 200 d) and cyclic drying and rewetting conditions. Greater total Hg (THg) removal (72 to nearly 100%) and limited MeHg production (<65 ng L⁻¹) were observed in digestate-based biochar-amended systems under initial saturated conditions. Drying and rewetting resulted in limited THg release, increased aqueous MeHg, and decreased solid MeHg in digestate-based biochar-amended systems. Changes in Fe and S chemistry as well as microbial communities during drying and rewetting potentially affected MeHg production. Digestate-based biochars may be more effective as amendments to control Hg release and minimize MeHg production in floodplain soils under long-term saturated and drying and rewetting conditions compared to distillers’ grains biochar.
Show more [+] Less [-]Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas
2020
Peng, Weihan | Yang, Jiacheng | Corbin, Joel | Trivanovic, Una | Lobo, Prem | Kirchen, Patrick | Rogak, Steven | Gagné, Stéphanie | Miller, J Wayne | Cocker, David
New environmental regulations are mandating cleaner fuels and lower emissions from all maritime operations. Natural gas (NG) is a fuel that enables mariners to meet regulations; however, emissions data from maritime operations with natural gas is limited. We measured emissions of criteria, toxic and greenhouse pollutants from a dual-fuel marine engine running either on diesel fuel or NG as well as engine activity and analyzed the impacts on pollutants, health, and climate change. Results showed that particulate matter (PM), black carbon (BC), nitric oxides (NOₓ), and carbon dioxide (CO₂) were reduced by about 93%, 97%, 92%, and 18%, respectively when switching from diesel to NG. Reductions of this magnitude provide a valuable tool for the many port communities struggling with meeting air quality standards. While these pollutants were reduced, formaldehyde (HCHO), carbon monoxide (CO) and methane (CH₄) increased several-fold. A health risk assessment of exhaust plume focused on when the vessel was stationary, and at-berth showed the diesel plume increased long-term health risk and the NG plume increased short-term health risk. An analysis of greenhouse gases (GHGs) and BC was performed and revealed that, on a hundred year basis, the whole fuel cycle global warming potential (GWP) per kWh including well-to-tank and exhaust was 50% to few times higher than that of diesel at lower engine loads, but that it was similar at 75% load and lower at higher loads. Mitigation strategies for further reducing pollutants from NG exhaust are discussed and showed potential for reducing short-term health risks and climate impacts.
Show more [+] Less [-]