Refine search
Results 1021-1030 of 7,995
Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils Full text
2021
Wei, Wei | Isobe, Kazuo | Shiratori, Yutaka | Yano, Midori | Toyoda, Sakae | Koba, Keisuke | Yoshida, Naohiro | Shen, Haoyang | Senoo, Keishi
Nitrous oxide (N₂O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH₃ oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N₂O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N₂O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH₃ oxidizers and denitrifiers, including the previously-overlooked taxa, in N₂O emission from a cropland, and address the biological and environmental factors controlling the N₂O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N₂O production than the long-studied ones. We also demonstrated that the N₂O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N₂O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N₂O production by overlooked denitrifying bacteria and N₂O reduction by long-studied N₂O-reducing bacteria after manure fertilization into the plowed layer; and (3) N₂O production by NH₃-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH₃ oxidizers and denitrifiers, which will help us understand the environmental context-dependent N₂O emission processes.
Show more [+] Less [-]Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations Full text
2021
Lee, Seoyoung | Kim, Minseok | Kim, Seung-Yeon | Lee, Dong-Won | Lee, Hanlim | Kim, Jhoon | Le, Sophia | Liu, Yang
To better understand air quality issues in South Korea, it is essential to identify the main contributors of air pollution and to quantify the effects of transboundary transport. In this study, geostationary satellite measurements were used to assess the effects of aerosol transport on air quality in South Korea. This study proposes a method to define the long-range transport (LRT) of aerosols into the Korean Peninsula using remote sensing obervations and back-trajectories and estimates the LRT effects on air quality in Seoul using in-situ particulate matter (PM) measurements. Aerosol optical depths (AODs) are obtained from the Geostationary Ocean Color Imager (GOCI), and the back-trajectories are from the National Ocean and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. For LRT events, satellite observations showed high AOD plumes over the Yellow Sea, a pathway between Eastern China and South Korea, and the movements of aerosol plumes transported to South Korea were also detected. PM₂.₅ concentrations, PM₁₀ concentrations, and AOD during LRT increased by 52%, 49%, and 81%, respectively, relative to their average values for 2015–2018. To quantitatively characterize the LRT of aerosols, the effects of LRT on PM₂.₅ concentrations were estimated for each PM concentration category. The contribution of LRT to PM₂.₅ concentrations was estimated to be 33% during 2015–2018. When high concentrations of PM₂.₅ were observed in Seoul, they were likely to be associated with LRT events.
Show more [+] Less [-]Modeling of selenite toxicity to wheat root elongation using biotic ligand model: Considering the effects of pH and phosphate anion Full text
2021
Wang, Fangli | Song, Ningning
It has not been well understood that the binding affinity and potential toxicity of different chemical forms of selenite (Se(IV)), which are predominant forms of selenium with plant availability. The influences of pH and major anions on Se(IV) toxicity to wheat root elongation were determined in solutions and modeled based on the biotic ligand model (BLM) and free ion activity model (FIAM) concepts. Results showed that EC50[Se(IV)]T values increased from 164 to 273 μM as the pH raised from 4.5 to 8.0, indicating the increase of pH induced weakened Se(IV) toxicity. The EC50{SeO₃²⁻} values increased from 0.019 to 71.3 μM while the EC50{H₂SeO₃} values sharply decreased from 2.08 μM to 0.760 nM with the pH increasing from 4.5 to 8.0. The effect of pH on Se(IV) toxicity could be explained by the changes of Se(IV) species in different pH solutions as H₂SeO₃, HSeO₃⁻ and SeO₃²⁻ were differently toxic to wheat root elongation. The toxicity of Se(IV) decreased with increasing H₂PO₄⁻ activity but not for SO₄²⁻, NO₃⁻ and Cl⁻ activities, indicating that only H₂PO₄⁻ had a competitive effect with Se(IV) on the binding sites. A site-specific BLM was developed to count in effects of pH and H₂PO₄⁻, and stability constants of H₂SeO₃, HSeO₃⁻, SeO₃²⁻ and H₂PO₄⁻ to the binding sites were obtained: logKH2SeO3BL = 4.96, logKHSeO3BL = 3.47, logKSeO3BL = 2.56 and logKH2PO4BL = 2.00. Results implied that BLM performed much better than FIAM in the wheat root elongation prediction when coupling toxic species H₂SeO₃, HSeO₃⁻, SeO₃²⁻, and the competitions of H₂PO₄⁻ for the binding sites while developing the Se(IV)-BLM.
Show more [+] Less [-]Mitigating N2O emission by synthetic inhibitors mixed with urea and cattle manure application via inhibiting ammonia-oxidizing bacteria, but not archaea, in a calcareous soil Full text
2021
Tao, Rui | Li, Jun | Hu, Baowei | Chu, Guixin
Synthetic inhibitors and organic amendment have been proposed for mitigating greenhouse gas N₂O emissions. However, their combined effect on the N₂O emissions and ammonia-oxidizer (ammonia-oxidizing bacteria and archaea, AOB and AOA) communities remains unclear in calcareous soils under climate warming. We conducted two incubation experiments (25 and 35 °C) to examine how N₂O emissions and AOA and AOB communities responded to organic amendment (urea plus cattle manure, UCM), and in combination with urease (N-(n-butyl) thiophosphoric triamide, NBPT) and nitrification inhibitor (nitrapyrin). The treatments of UCM + nitrapyrin and UCM + nitrapyrin + NBPT significantly lowered total N₂O emissions by average 64.5 and 71.05% at 25 and 35 °C, respectively, compared with UCM treatment. AOB gene abundance and α-diversity (Chao1 and Shannon indices) were significantly increased by the application of urea and manure (P < 0.05). However, relative to UCM treatment, nitrapyrin addition treatments decreased AOB gene abundance and Chao 1 index by average 115.4 and 30.4% at 25 and 35 °C, respectively. PCA analysis showed that UCM or UCM plus nitrapyrin notably shifted AOB structure at both temperatures. However, fertilization had little effects on AOA community (P > 0.05). Potential nitrification rate (PNR) was greatly decreased by nitrapyrin addition, and PNR significantly positively correlated with AOB gene abundance (P = 0.0179 at 25 °C and P = 0.0029 at 35 °C) rather than AOA (P > 0.05). Structural equation model analysis showed that temperature directly increased AOA abundance but decrease AOB abundance, while fertilization indirectly influenced AOB community by altering soil NH₄⁺, pH and SOC. In conclusion, the combined application of organic amendment, NBPT and nitrapyrin significantly lowered N₂O emissions via reducing AOB community in calcareous soil even at high temperature. Our findings provide a solid theoretical basis in mitigating N₂O emissions from calcareous soil under climate warming.
Show more [+] Less [-]Full-scale bioremediation of diesel-polluted soil in an Arctic landfarm Full text
2021
Johnsen, Anders R. | Boe, Uffe S. | Henriksen, Peter | Malmquist, Linus M.V. | Christensen, Jan H.
A full-scale, experimental landfarm was tested for the capacity to biodegrade oil-polluted soil under high-Arctic tundra conditions in northeast Greenland at the military outpost 9117 Station Mestersvig. Soil contaminated with Arctic diesel was transferred to the landfarm in August 2012 followed by yearly addition of fertilizer and plowing and irrigation to optimize microbial diesel biodegradation. Biodegradation was determined from changes in total petroleum hydrocarbons (TPH), enumeration of specific subpopulations of oil-degrading microorganisms (MPN), and changes in selected classes of alkylated isomers and isomer ratios. Sixty-four percent of the diesel was removed in the landfarm within the first year, but a recalcitrant fraction (18%) remained after five years. n-alkanes and naphthalenes were biodegraded as demonstrated by changing isomer ratios. Dibenzothiophenes and phenanthrenes showed almost constant isomer ratios indicating that their removal was mostly abiotic. Oil-degrading microorganisms were present for the major components of diesel (n-alkanes, alkylbenzenes and alkylnaphthalenes). The degraders showed very large population increases in the landfarm with a peak population of 1.2 × 10⁹ cells g⁻¹ of total diesel degraders. Some diesel compounds such as cycloalkanes, hydroxy-PAHs and sulfur-heterocycles had very few or no specific degraders, these compounds may consequently be degraded only by slow co-metabolic processes or not at all.
Show more [+] Less [-]Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase Full text
2021
Yu, Libing | Li, Wenjing | Chu, Jian | Chen, Chun | Li, Xijian | Tang, Wei | Xia, Binyuan | Xiong, Zhonghua
As an emerging pollutant, uranium poses serious concerns to ecological and human health. The kidney has been established as a major deposition site and the most sensitive target organ for uranium poisoning, and the underlying toxicological mechanisms have been associated with oxidative stress and mitochondrial respiration. However, the identities of key molecular targets in uranium-induced toxicity remain elusive. In this study, we comprehensively evaluated the in vitro effects of uranium on ten critical enzymes in the mitochondrial respiration pathway and discovered that respiratory chain complex IV (cytochrome c oxidase) and complex V (ATP synthase) were strongly inhibited. The inhibitory effects were validated with mitochondria from human renal proximal tubule cells—the most affected renal site in uranium poisoning. The IC₅₀ values (around 1 mg/L) are physiologically relevant, as they are comparable to known kidney accumulation levels in uranium poisoning. In addition, these inhibitory effects could explain the well-documented uranium-induced reactive oxygen species generation and mitochondrial alterations. In conclusion, cytochrome c oxidase and ATP synthase are possibly key molecular targets underlying the toxic effects of uranium.
Show more [+] Less [-]Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides Full text
2021
Rodríguez-Rodríguez, Carlos E. | Matarrita, Jessie | Herrero-Nogareda, Laia | Pérez-Rojas, Greivin | Alpízar-Marín, Melvin | Chinchilla-Soto, Cristina | Pérez-Villanueva, Marta | Vega-Méndez, Dayana | Masís-Mora, Mario | Cedergreen, Nina | Carazo Rojas, Elizabeth
Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides Full text
2021
Rodríguez-Rodríguez, Carlos E. | Matarrita, Jessie | Herrero-Nogareda, Laia | Pérez-Rojas, Greivin | Alpízar-Marín, Melvin | Chinchilla-Soto, Cristina | Pérez-Villanueva, Marta | Vega-Méndez, Dayana | Masís-Mora, Mario | Cedergreen, Nina | Carazo Rojas, Elizabeth
A monitoring network was established in streams within a catchment near the Costa Rican Pacific coast (2008–2011) to estimate the impact of pesticides in surface water (84 samples) and sediments (84 samples) in areas under the influence of melon and watermelon production. A total of 66 (water) and 47 (sediment) pesticides were analyzed, and an environmental risk assessment (ERA) was performed for four taxa (algae, Daphnia magna, fish and Chironomus riparius). One fungicide and seven insecticides were detected in water and/or sediment; the fungicide azoxystrobin (water) and the insecticide cypermethrin (sediments) were the most frequently detected pesticides. The insecticides endosulfan (5.76 μg/L) and cypermethrin (301 μg/kg) presented the highest concentrations in water and sediment, respectively. The ERA revealed acute risk in half of the sampling points of the melon-influenced area and in every sampling point from the watermelon-influenced area. Safety levels were exceeded within and around the crop fields, suggesting that agrochemical contamination was distributed along the catchment, with potential influence of nearby crops. Acute risk was caused by the insecticides chlorpyrifos, cypermethrin and endosulfan to D. magna, fish and C. riparius; the latter was the organism with the overall highest/continuous risk. High chronic risk was determined in all but one sampling point, and revealed a higher number of pesticides of concern. Cypermethrin was the only pesticide to pose chronic risk for all benchmark organisms. The results provide new information on the risk that tropical crops pose to aquatic ecosystems, and highlight the importance of including the analysis of sediment concentrations and chronic exposure in ERA.
Show more [+] Less [-]Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides Full text
2021
A monitoring network was established in streams within a catchment near the Costa Rican Pacific coast (2008–2011) to estimate the impact of pesticides in surface water (84 samples) and sediments (84 samples) in areas under the influence of melon and watermelon production. A total of 66 (water) and 47 (sediment) pesticides were analyzed, and an environmental risk assessment (ERA) was performed for four taxa (algae, Daphnia magna, fish and Chironomus riparius). One fungicide and seven insecticides were detected in water and/or sediment; the fungicide azoxystrobin (water) and the insecticide cypermethrin (sediments) were the most frequently detected pesticides. The insecticides endosulfan (5.76 μg/L) and cypermethrin (301 μg/kg) presented the highest concentrations in water and sediment, respectively. The ERA revealed acute risk in half of the sampling points of the melon-influenced area and in every sampling point from the watermelon-influenced area. Safety levels were exceeded within and around the crop fields, suggesting that agrochemical contamination was distributed along the catchment, with potential influence of nearby crops. Acute risk was caused by the insecticides chlorpyrifos, cypermethrin and endosulfan to D. magna, fish and C. riparius; the latter was the organism with the overall highest/continuous risk. High chronic risk was determined in all but one sampling point, and revealed a higher number of pesticides of concern. Cypermethrin was the only pesticide to pose chronic risk for all benchmark organisms. The results provide new information on the risk that tropical crops pose to aquatic ecosystems, and highlight the importance of including the analysis of sediment concentrations and chronic exposure in ERA.
Show more [+] Less [-]Seasonal distribution pattern and bioaccumulation of Polycyclic aromatic hydrocarbons (PAHs) in four bioindicator coastal fishes of Argentina Full text
2021
Recabarren-Villalón, Tatiana | Ronda, Ana C. | Oliva, Ana L. | Cazorla, Andrea Lopez | Marcovecchio, Jorge E. | Arias, Andrés H.
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of global concern in coastal environments. They have a wide range of biological toxicity and due to their inherent properties, can easily bioaccumulate in organisms and concentrate in the environment. This work evaluated, in an integrated way, the seasonal PAH distribution patterns in sediments and four bioindicators fish species in a highly impacted estuary of Argentina; besides, their bioaccumulation patterns were assessed for the first time as indicator of ecological risk. The highest PAH levels in fish were found for Ramnogaster arcuata with an average of 64 ng g⁻¹ w.w., followed by Micropogonias furnieri (45 ng g⁻¹ w.w.), Cynoscion guatucupa (28 ng g⁻¹ w.w.), and Mustelus schmitti (16 ng g⁻¹ w.w.). Fish presented the highest PAH levels in fall with a predominance of petrogenic PAHs in colder seasons and pyrolytic PAHs in warmer seasons. Sediments presented an average of 233 ng g⁻¹ d.w. with the same seasonal composition pattern of the fish tissues. Additionally, the data suggested that the main source of PAHs are wastewater discharges. The bioaccumulation factor (BAF) of PAHs in the tested fishes were found to range from 0.3 to 8. The highest values were observed during fall and winter, while bioaccumulation did not occur in moist spring and summer samples, which would suggest a high biotransformation process during these seasons. Results suggested that class III of juvenile C. guatucupa and M. furnieri, and adults R. arcuata are more sensitive bioindicators of chronic PAH contamination and that their bioaccumulation is independent of the compound hydrophobicity; this could have a positively influence on the criteria used for biological monitoring programs along the Atlantic coast. In addition, the presented BAF data on the target species will serve as a useful pollution indicator for South Atlantic coastal fish.
Show more [+] Less [-]Effect of pyroligneous acid on soil urease, amidase, and nitrogen use efficiency by Chinese cabbage (Brassica campestris var. Pekinensis) Full text
2021
Lee, Joo Kyung | Park, Hyun Jun | Cha, Seung Ju | Kwon, Seon Ju | Park, Jin Hee
Urea is one of the most commonly used nitrogen fertilizers in agricultural soil and is easily decomposed by soil urease resulting in ammonium release. The produced ammonium can be volatilized or converted to nitrate, which is susceptible to leaching, leading to groundwater contamination unless used by plants. Hence, it is important to control the release of nitrogen from the urea. Pyroligneous acid inhibited the urease activity and decreased ammonium release up to 80% compared to the control. Amidase including asparaginase and glutaminase is an enzyme that catalyzes hydrolysis of amide group, similar to urease. Therefore, the effect of pyroligneous acid on the inhibition of soil amidase was also tested and the results showed that pyroligneous acid competitively inhibited asparaginase while glutaminase was not inhibited. However, inhibitory effect of pyroligneous acid on asparaginase was negligible compared to the urease. The application of pyroligneous acid with a smaller amount of urea for controlled nitrogen release during Chinese cabbage growth showed that dry biomass and nutrient contents of Chinese cabbage were similar to the case of the conventional urea application. The nitrogen utilization efficiency (NUE) was highest for 33% less amount of urea supply with pyroligneous acid (2.21) compared to conventional treatment (1.81). Consequently, the use of pyroligneous acid with urea enhances nitrogen use efficiency while also protecting environments from non-point source contamination.
Show more [+] Less [-]In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters Full text
2021
Vrana, Branislav | Urík, Jakub | Fedorova, Ganna | Švecová, Helena | Grabicová, Kateřina | Golovko, Oksana | Randák, Tomáš | Grabic, Roman
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d⁻¹, with the overall median value of 0.10 L d⁻¹. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
Show more [+] Less [-]