Refine search
Results 1031-1040 of 4,940
Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida
2019
Ju, Hui | Zhu, Dong | Qiao, Min
Microplastics (MPs) are an emerging contaminant and are confirmed to be ubiquitous in the environment. Adverse effects of MPs on aquatic organisms have been widely studied, whereas little research has focused on soil invertebrates. We exposed the soil springtail Folsomia candida to artificial soils contaminated with polyethylene MPs (<500 μm) for 28 d to explore the effects of MPs on avoidance, reproduction, and gut microbiota. Springtails exhibited avoidance behaviors at 0.5% and 1% MPs (w/w in dry soil), and the avoidance rate was 59% and 69%, respectively. Reproduction was inhibited when the concentration of MPs reached 0.1% and was reduced by 70.2% at the highest concentration of 1% MPs compared to control. The half-maximal effective concentration (EC₅₀) value based on reproduction for F. candida was 0.29% MPs. At concentrations of 0.5% dry weight in the soil, MPs significantly altered the microbial community and decreased bacterial diversity in the springtail gut. Specifically, the relative abundance of Wolbachia significantly decreased while the relative abundance of Bradyrhizobiaceae, Ensifer and Stenotrophomonas significantly increased. Our results demonstrated that MPs exerted a significant toxic effect on springtails and can change their gut microbial community. This can provide useful information for risk assessment of MPs in terrestrial ecosystems.
Show more [+] Less [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet
2019
Løseth, Mari Engvig | Briels, Nathalie | Eulaers, Igor | Nygård, Torgeir | Malarvannan, Govindan | Poma, Giulia | Covaci, Adrian | Herzke, Dorte | Bustnes, Jan Ove | Lepoint, Gilles | Jenssen, Bjørn Munro | Jaspers, Veerle L.B.
Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 – 87 days old) and stable carbon and nitrogen isotopes (δ¹³C and δ¹⁵N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 – 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 – 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 – 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 – 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ¹³C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings.
Show more [+] Less [-]Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration
2019
Ryu, Jeongeun | Kim, Jeong Jae | Byeon, Hyeokjun | Go, Taesik | Lee, Sang Joon
Reduction of particulate matter (PM) has emerged as one of the most significant challenges in public health and environment protection worldwide. To address PM-related problems and effectively remove fine particulate matter (PM2.5), environmentalists proposed tree planting and afforestation as eco-friendly strategies. However, the PM removal effect of plants and its primary mechanism remains uncertain. In this study, we experimentally investigated the PM removal performance of five plant species in a closed chamber and the effects of relative humidity (RH) caused by plant evapotranspiration, as a governing parameter. On the basis of the PM removal test for various plant species, we selected Epipremnum aureum (Scindapsus) as a representative plant to identify the PM removal efficiency depending on evapotranspiration and particle type. Results showed that Scindapsus yielded a high PM removal efficiency for smoke type PM2.5 under active transpiration. We examined the correlation of PM removal and relative humidity (RH) and evaluated the increased effect of RH on PM2.5 removal by using a plant-inspired in vitro model. Based on the present results, the increase of RH due to evapotranspiration is crucial to the reduction of PM2.5 using plants.
Show more [+] Less [-]Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China
2019
Li, Yi | Wu, Hainan | Shen, Yun | Wang, Chao | Wang, Peifang | Zhang, Wenlong | Gao, Yu | Niu, Lihua
In order to accurately monitor the changes in a freshwater ecosystem in response to anthropogenic stressors, microbe–environment correlations and microbe–microbe interactions were combined to determine crucial indicator taxa in contaminated sediments. The diversity, composition, and co–occurrence pattern of bacterial communities in 23 sediment samples collected from Lake Taihu were explored using 16S rRNA amplicon sequencing analysis. Fisher's exact test showed that the cluster analyses of samples could show a direct correlation between the relative abundance of bacterial communities and the physicochemical properties of the sediment (P < 0.0001), suggesting that bacterial communities can be used to monitor contamination gradients in freshwater sediments. According to the microbe–environment correlation, 24 orders and 60 families were initially identified via indicator species analysis as indicator taxa of different pollution levels. The co–occurrence network further showed that topological features of bacterial communities were clearly different at different pollution levels, although the diversity and composition of bacterial communities displayed similarities between minimally and moderately polluted sites. Indicator taxa were then screened for keystone species, which co–occurrence relationships showed the high degree and low betweenness centrality values (i.e. degree >5, betweenness centrality <1000) of the network. Nine orders and 13 families were finally extracted as crucial indicator taxa of the different pollution levels in eutrophic Lake Taihu. Obtaining crucial indicator taxa from environmental sequences allows to trace increasing levels of pollution in aquatic ecosystems and provides a novel mean to monitor watersheds sensitive to anthropic influences.
Show more [+] Less [-]Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China
2019
Xiao, Ran | Guo, Di | Ali, Amjad | Mi, Shenshen | Liu, Tao | Ren, Chunyan | Li, Ronghua | Zhang, Zengqiang
Contamination of agricultural soil by heavy metals has become a global issue concerning food security and human health risk. In this study, a soil investigation was conducted to evaluate metals accumulation, potential ecological and health risks as well as to identify sources of metals in paddy soils in Hanzhong City, which is located in a sedimentary basin. Ninety-two (92) surface soil samples (bulk soil) and their corresponding rice samples, 21 irrigation water samples, and 18 fertilizer samples were collected from two typical counties and quantified for the heavy metals (i.e., As, Cd, Cu, Hg, Pb, and Zn) concentrations. The results showed that As, Cd, and Zn were the main contaminants in soils in the studied area. Additionally, elevated Hg content in soils might also pose risks to the local ecosystem. Cadmium and As demonstrated high mobility, and their average contents in rice grains were slightly higher than the permissible threshold (0.20 mg kg⁻¹). Moreover, Pb, As, and Cd intake via rice consumption might result in potential risks to local residents. Metal distribution revealed that pollution in the studied area is non-homogeneous, and agricultural activities (As, Cu, and Cd), transportation emission (Cu and Pb), coal combustion (Hg and As), and smelting activities (Zn, Pb, and Cu) were ascertained as the potential sources based on the Positive matrix factorization (PMF) analysis results.
Show more [+] Less [-]Response of bleached and symbiotic sea anemones to plastic microfiber exposure
2019
Romanó de Orte, Manoela | Clowez, Sophie | Caldeira, K. (Ken)
Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone Aiptasia pallida using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming.
Show more [+] Less [-]The accumulation and distribution of five antibiotics from soil in 12 cultivars of pak choi
2019
Yu, Xiaolu | Liu, Xiaoxia | Liu, Hang | Chen, Junhao | Sun, Ying
There is a lack of understanding about the potential accumulation of antibiotics in plants exposed to low-dose contaminated soil. 12 Brassica rapa subsp. chinensis cultivars were used to investigate the different accumulation capacities of sulfamethoxypyridazine, tetracycline, ofloxacin, norfloxacin and difloxacin from the soil. The results showed a significant variation (p < 0.05) among the 12 cultivars in the accumulation of antibiotics. Cultivars Y1 and Y2 had the highest accumulation capacity with average concentrations of 3.26 and 3.00 μg kg⁻¹, respectively, while cultivars Y4 and Y9 had the lowest accumulation capacity with average concentrations of 0.83 and 0.89 μg kg⁻¹. The average antibiotic concentration in all edible part samples (2.74 μg kg⁻¹) of the treatment group was about 3.0-fold of that of the control group (0.93 μg kg⁻¹). The average bioconcentration factors of sulfamethoxypyridazine, tetracycline, ofloxacin, norfloxacin and difloxacin were 0.051, 0.031, 0.017, 0.036 and 0.034, respectively, indicating a higher uptake of sulfamethoxypyridazine compared to ofloxacin. And the mobility of antibiotics in soil is a main factor affecting the bioavailability for plants. The average concentration of antibiotics in edible parts of cultivar Y12 on the 25th and 45th day were 1.52 and 1.73 μg kg⁻¹ and that of the roots were 3.73 and 6.61 μg kg⁻¹, respectively. The concentrations of tetracycline and difloxacin in the edible parts and roots significantly increased with growing time, while the concentration of sulfamethoxypyridazine and ofloxacin changed little throughout the growing period. The potential risks of antibiotics in vegetables on human health cannot be ignored. Overall, attention should be paid to the translocation of antibiotics from soil to plants.
Show more [+] Less [-]Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna
2019
Eltemsah, Yehia Sayed | Bohn, Thomas
We investigate the distribution and effects of polystyrene microplastic (MP) particles in exposure experiments with the ecotoxicology model organism Daphnia magna. The aim was to investigate the short and long-term toxicity of MP at different concentrations. To achieve this goal, the effects of 6 μm commercially available polystyrene beads on two different life-stages of D. magna: < 24 h old juveniles and 9 days old adults was assessed. The following end points in test animals were measured: (1) survival, (2) growth, (3) individual and population fecundity, (4) age at maturation and (5) body size of newborn offspring. These response variables were followed in two acute and two chronic experiments. The acute experiments showed that MP is not acutely toxic to D. magna within 48 h, but cause added mortality within 120 h. The juveniles were about 50% more sensitive than the adults tested. In life-cycle experiments testing chronic exposure to MP, again, animals exposed as juveniles at relatively high concentrations, i.e. > 30 μg ml⁻¹ showed higher sensitivity. We observed slightly increased mortality, reduced growth and stimulation of early reproduction at the cost of later reproduction. Animals exposed after reaching adulthood did not show increased mortality and showed a stimulation response with higher reproductive rates than the control group. However, both the growth rate of mother animals and the body size of newborn declined with increasing dose of MP. We conclude that these effects indicate a role of MP in mechanical interaction/interference with the animal on the level of feeding (clogging filtering functions), digestion (gut filled with plastic particles), and/or other animal behavior. The study also illustrates how MP with slow break-down rates may accumulate in the environment and enter the food-chain as obstructing non-food particles in filter-feeding organisms.
Show more [+] Less [-]Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN)
2019
Pulgar, José | Zeballos, Danae | Vargas Ruiz, Juan Carlos | Aldana, Marcela | Manriquez, Patricio H. | Manriquez, Karen | Quijón, Pedro A. | Widdicombe, Stephen | Anguita, Cristobal | Quintanilla, Diego | Duarte, Cristian
The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.
Show more [+] Less [-]Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix)
2019
Zhang, Cong | Li, Huixin | Qin, Lei | Ge, Jing | Qi, Zhang | Talukder, Milton | Li, Yan-Hua | Li, Jin-Long
Atrazine (ATR), one of the most widely used pesticides in agricultural production, are gradually concerned due to potential ecosystem and health risks. Further, the induction of ATR nephrotoxicity and detoxification response is still unknown. To evaluate ATR-induced nephrotoxicity, quails were treated with 0, 50, 250 or 500 mg/kg ATR by gavage administration for 45 days. Histopathology indicated that ATR exposure caused renal tubular epithelial cell swelling and endoplasmic reticulum degeneration, suggesting that ATR exposure causes renal impairment even renal diseases. Notably, ATR interfered cytochrome P450 system (CYP450s) homeostasis by enhancing contents or activities of CYP450s (total CYP450, Cyt b5, AH, APND, NCR and ERND) and the expression of CYP450 isoforms (CYP1A, CYP1B, CYP2C and CYP3A). ATR triggered phase II detoxifying reaction, reflected by the elevated GSH level, GST activity and the up-regulation of GST isoforms (GSTa, GSTa3 and GSTt1) and GSH synthetase (GCLC). Moreover, ABC transporters were activated to expel ATR from the body by increasing expression of MRP1 and P-GP gene. Accompanying these alterations, the nuclear receptors (AHR, CAR and PXR) were activated by ATR in a dose-dependent manner. Analysis results of present study demonstrated that the induction of phase II detoxifying enzyme system and ABC transporters could be modulated by nuclear receptors response and CYP450s disturbance in low-dose ATR-treated quail. In conclusion, all data suggested that nuclear receptors AHR-mediated detoxification pathway was involved in ATR-induced nephrotoxicity. These results provided new evidence about the nephrotoxic effects of ATR on the response of biotransformation and detoxification system.
Show more [+] Less [-]